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Compositional data analysis has long been regarded as difficult because of the
so-called constant sum constraint. The contrary is the case. Attention to a few
simple logical necessities of compositional data analysis, such as scale invariance,
subcompositional coherence, perturbation as the mechanism of change of a compo-
sition, leads inevitably to the recognition of the unit simplex as a sensible sample
space with its associated and relevant statistical methodology. Such a recogni-
tion dictates radical changes in compositional thinking. For example, use of the
arithmetic mean of a set of compositions as the centre of the compositional data
set can be absurd; a more meaningful centre is based on geometric means. The
methodology is most simply described in terms of a transformation technique in-
volving logratios of the components of the compositions. Since any meaningful
statement about a composition can be expressed in terms of logratios the method
is applicable throughout the complete range of compositional problems. A num-
ber of compositional data sets is used to illustrate a variety of practical situa-
tions and appropriate methods such as biplots, predictive distributions, atypicality
indices, joint variability models, conditional models and convex linear combina-
tions of compositions are demonstrated. Finally extensions are considered and a
plea is made to geologists for more precision in specifying geological hypotheses.

KEY WORDS: biplot, conditional model, endmember problem, joint variability,
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A LITTLE BIT OF HISTORY

This is 1997 and we must look back to 1897 for our starting point. One
hundred years ago Karl Pearson, undoubtedly one of the great-grandfathers of
modern statistics, published in Pearson (1897) one of the clearest warnings ever
issued to statisticians and other scientists beset with uncertainty and variability:
Beware of attempts to interpret correlations between ratios whose numerators and
denominators contain common parts. And of such is the world of compositional
data, where for example some rock specimen, of total weight w, is broken down into
mutually exclusive and exbaustive parts with component weights wy, ..., wp and
then transformed into a composition (z1,...,zp) = (wy,...,wp)/(w1 + - + wp).
Our reason for forming such a composition is that in many problems composition
is the relevant entity. For example the comparison of rock specimens of different
weights can only be achieved by some form of standardisation and composition
(per unit weight) is a simple and obvious concept for achieving this. Equivalently
we could say that any meaningful statement about the rock specimens should not
depend on the largely accidental weights of the specimens.

It is a great pity that Pearson’s warning went unheeded for so long and that
so many are still unaware of it and of possible remedies. I hope I can assume that
you, as mathematical geologists, accept the deductive power of mathematics and
also, dare 1 hope, the inductive strength of statistics. Such an acceptance and



some very simple mathematics lead inevitably to certain theoretical requirements
of any meaningful discussion of compositions. The role of statistics is then to

develop an appropriate methodology for the practical analysis of compositional
data (Aitchison, 1994).

SCALE INVARIANCE: THE FUNDAMENTAL PRINCIPLE OF
COMPOSITIONAL DATA ANALYSIS

When we say that a problem is compositional we are recognising that the sizes
of our specimens are irrelevant. When you as geologists talk about the composition
of an object such as the major oxide composition of a rock you imply that you are
interested in a dimensionless problem. You are not concerned whether the rock
weighs one gm or one Ib. This trivial admission has far-reaching consequences. Let

us apply some clear thinking to acceptance of this fundamental scale invariance
principle.
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Figure 1. Representation of equivalent compositions
as points on rays of the positive orthant.

A simple example can illustrate the argument. In Fig. 1, which shows three-
dimensional positive space R, the two points w(1.6,2.4,4.0) and W(3.0,4.5,7.5)
represent the weights of the three parts (a, b, c) of two specimens of total weight
8 gm and 15 gm, respectively. If we are interested in compositional problems
we recognise that these are of the same composition with the difference 1n weight
being taken account of by the scale relationship W = (15/8)w. More generally two
compositions w and W are compositionally equivalent, written W ~ w, when there
exists a positive proportionality constant p such that W = pw. The fundamental
requirement of compositional data analysis can then be stated as follows: any
meaningful construct or function f of a composition must be such that f(W) =
f(w) when W ~ w, or equivalently

f(pw) = f(w) for every p > 0. (1)

This is a common problem in group theory: the requirement (1) is that the function
f must be invariant under the group of scale transformations. A general result of
group theory is that any group invariant function can be expressed as a function of
a maximal invariant. Now a function g is 2 maximal invariant when g(W) = g(w)



implies W ~ w. Here it is trivial to show that the (D — 1)-vector function
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is a maximal invariant. The important consequence of this is the following.
Any meaningful (scale-invariant) function of a composition can be ez-
pressed in terms of ratios of the components of the composition.

Note the one-to-one correspondence between the components of w and a set
of independent and exhaustive ratios such as
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with the components of w determined by these ratios as
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Note also that there are many equivalent sets of ratios which may be used for
the purpose of creating meaningful functions of compositions. For example, a
more symmetric set of ratios such as w/g(w), where g(w) = (w; ---wp)*/P is the
geometric mean of the components of w, would equally meet the scale-invariant
requirement.
All that this blinding by mathematics is saying is surely the obvious. Com-
ositions are concerned with relative values and so ratios of components. When I
t became interested in compositional data I thought that this was self-evident,
but apparently not; see, for example, the sequence of letters (Aitchison, 1990a,
b; 1991; Watson, 1990; 1991) in Mathematical Geology arising from Watson and
Philip (1989) and ending with Aitchison (1992).

CHOICE OF SAMPLE SPACE

In my own teaching over the last 45 years I have issued a warning to all my
students, similar to that of Pearson. Ignore the clear definition of your sample
space at your peril. When faced with a new situation the first thing you must
resolve before you do anything else is an appropriate sample space. On occasions
when I have found some dispute between students over some statistical issue the
question of which of them had appropriate sample spaces has almost always de-
termined which students are correct in their conclusions. If, for example, it is a
question of association between the directions of departure and return of migrating
Barcelona swallows then an appropriate sample space is a doughnut.

Now I am sure that, with the exception of that man who mistook his wife
for his hat, we recognise that a rectangular box, a tetrahedron, a sphere and
a doughnut look rather different. It should come as no surprise to us therefore
that problems with these different sample spaces might require completely different
statistical methodologies. It has always seemed surprising to me that the direction
data analysts had little difficulty in seeing that the sphere and the torus require
their own special methodology, whereas for so long statisticians, geologists and



all other scientists seemed to think that what was good enough for a box was
good enough for a tetrahedron. And there certainly can be little doubt that most
geologists are aware of the true nature of the samgle space. Which of you has not
constructed or at least studied a ternary diagram?

In the first step of statistical modelling, namely specifying a sample space,
the choice is with the modeller. It is how the sample space is used or exploited
to answer relevant problems that is important. We might, as in our study of
scale invariance above, take the set of rays through the origin and in the positive
orthant as our sample space. The awkwardness here is that the notion of placing
a probability measure on a set of rays is less familiar than on a set of points.
Moreover we know that as far as the study of compositions is concerned any
point on a ray can be used to represent the corresponding composition. The
selection of each representative point z where the rays meet the unit hyperplane
wy +---+wp =1 with z = w/(w; + - + wp) is surely the simplest form of
standardisation possible. We shall thus adopt the unit simplex

SP = {(zy, . zp) : 2 >0 (i=1,..., D), 2+ +zp=1}. (4)

To avoid any confusion on terminology for our generic composition z we refer to
the labels 1,..., D as the parts and the proportions z1,...,Zp as the components
of the composition z. With this representation we shall continue to ensure scale
invariance by formulating all our statements concerning compositions in terms of
ratios of components. Our next logical requirement will reinforce the good sense
o$ this awtion.

SUBCOMPOSITIONAL COHERENCE

The concept of a subcomposition such as the (NagO, K20, Al;O3) subcom-
position of a major-oxide composition of a rock is familiar to geologists. Formally
the subcomposition based on parts (1,2, ..., C) of a D-part composition (Tiyes TD)
is the (1,2, ..., C)-subcomposition (81, ...,5c) defined by

(81520 5¢C) = (T1yr )/ (TL + - - + TC), (5)

the closure operation, so familiar to geologists and filling the role that marginals
(subvectors or projections) play in the study of unconstrained vector data. Less
familiar is another logical necessity of compositional analysis, namely subcompo-
sitional coherence.

Let us consider two scientists A and B who are interested in soil samples,
which have been divided into aliquots. For each aliquot A records a 4-part com-
position (animal, vegetable, mineral, water); B first dries each aliquot without
recording the water content and arrives at 3-part composition (animal, vegetable,
mineral). Now let us suppose for simplicity the ideal situation where the aliquots
in each pair are identical and where the two scientists are absolutely accurate
in their determinations. Then clearly B's 3-part composition (s1,s2,s3) for an
aliquot will be a subcomposition of A’s 4-part composition (x1,22,73,74) for the
corresponding aliquot related as above with C = 3, D = 4. It is surely obvious
that any compositional statements that A and B make about the common parts,
animal, vegetable and mineral, must agree. This is the nature of subcompositional
coherence.

A simple example illustrates the lack of subcompositional coherence between
scientists who use product moment correlation of raw components. Consider the
simple data set:

Full compositions (z;, T2, T3, T4) Subcompositions (s, 82, $3)
(0.1,0.2,0.1,0.6) (0.25,0.50,0.25)
(0.2,0.1,0.1,0.6) (0.50,0.25,0.25)

(0.3,0.3,0.2,0.2) (0.375,0.375,0.25)

ot



Scientist A would report the correlation between animal and vegetable as
corr(z;,z2) = 0.5 whereas B would report corr(s;,sz) = —1. There is thus inco-
herence of the product-moment correlation between raw components as a measure
of dependence.

Note, however, that the ratio of two components remains unchanged when we
move from full composition to subcomposition: s;/s; = z;/z; so that, as long as
we work with scale invariant functions, or equivalently express all our statements
about compositions in terms of ratios, we shall be subcompositionally coherent.

PERTURBATION:
THE FUNDAMENTAL COMPOSITIONAL OPERATION

The role of group operations in statistics

For every sample space there are basic operations which when recognised dom-
inate clear thinking about data analysis. For example in the use of D-dimensional
real space RP as a sample space for unconstrained vectors, two such vectors y
and Y can always be fully related by asking what transformation is required to
change y into Y. The answer is in the operation of a translationt where Y = y+¢,
or equivalently by the inverse translation y = Y — ¢t. Moreover this relationship
between 7; and Y; is the same as that between y2 and Y5 if and only if Y and
Y, are equal translations ¢ of y; and y». Any definition of a difference or a dis-
tance measure must thus be such that the measure is the same for (y;,Y}) as for
(y1 + t, Y} + t) for every translation ¢. Technically this is a requirement of invari-
ance under the group of translations. It is the reason, though seldom expressed
because of its obviousness in this simple space, for the use of the mean vector

u = E(y) and the covariance matrix £ = V(y) = E{(y—p)(y— )T} as meaningful
measures of central tendency and dispersion. Recall also for further reference two
basic properties: for a fixed translation {,

E(y+t)=E(@) +t, V(y+t)=V(y). (6)

Similar considerations of groups of fundamental operations are essential for other
sample spaces. For example, in the analysis of directional data, as in the study of
the movement of tectonic plates, it was recognition that the group of rotations on
the sphere plays a central role and the use of a satisfactory representation of that
group that led (Chang, 197?) to the production of the essential statistical tool for
spherical regression.

Rationale for the recognition of the perturbation operation

As we have seen above a fundamental requirement of numerate investigation is
to be able to characterise change in the selected sample space. In the consideration
of the differences between compositions the obvious first questions are whether
there is an operation on a composition z, analogous to translation of a vector in real
space, which transforms-it into X, and whether this can be used to characterise the
relationship or ‘difference’ between two compositions. The answers are to be found
in the perturbation operator defined by Aitchison (1986, Section 2.8) and already
implicitly used in a geological application by Woronow (1990). The argument is
only slightly more complicated than that for real space.

The perturbation operator can be motivated by the following observation
within the positive orthant representation of compositions. For any two equivalent
compositions w and W on the same ray there is a scale relationship W = pw for
some p > 0, where each component of w is scaled by the same factor p to obtain the
corresponding component of W. For any two non-equivalent compositions w and
W on different rays a similar, but differential, scaling relationship W) = p w,,
..., Wp = ppwp reflects the change from w to W. Such a unique differential



scaling can always be found by taking p; = W;/w; (i = 1,...,D). Translating
this into terms of the compositional representations r and X within the unit
simplex sample space SP requires only an appropriate scaling: If we denote the
perturbation operation by ‘o’ then the perturbation p = (pi,...,p) applied to the
composition z = (zi,...,zp) produces the composition X given by

X =poz =(p121,...,PpTD)/(P1Z1 + * - - + PDZD). (7)

Note that the perturbing vector p can, without loss of generality, be chosen to be
of compositional form, with py +--- +pp = 1.

In mathematical terms the set of perturbations in SP form a group with the
identity perturbation e = (1/D,...,1/D) and the inverse of a perturbation p being
the closure C(p7",...,pp'). The relation between any two compositions z and X
can always be expressed as a perturbation operation X = (X o z™!) o z, where
Xoz~! is a perturbation in the group of perturbations in the unit simplex S2. The
change from X to z is simply the inverse perturbation defined by (X oz~ 1)1 =

=l o X. Thus any measure of difference between compositions z and X must
be expressible in terms of one or other of these perturbations. A consequence
of this is that if we wish to define any scalar measure of distance between two
compositions z and X, say A(z, X), then we must ensure that it is a function of
the ratios z,/X),...,2p/Xp. This together with attention to the need for scale

invariance, subcompositional coherence and some other simple requirements has
led Aitchison (1992) to advocate the use of

Az, X) = Z {log (z,) log (i‘:’) }2, (8)

i<y

reinforcing an intuitive equivalent choice in Aitchison (1986, Section 8.3).
Some familiar perturbations

Perturbations are not some esoteric mathematical entity. They are already in
use in other branches of statistics. If you have ever engaged in Bayesian inference
you have perturbed the prior probability assessment z on a finite number D of
hypotheses by the likelihood p to obtain the posterior assessment X through the
use of Bayes's formula (7). Aga.in, in genetic selection, the population composition
z of genotypes of one generation is perturbed by differential survival probabilities
represented by a perturbation p to obtain the composition X at the next genera-
tion, again by the perturbation probaf)lhstlc mechanism (7). May it not be that
certain geological processes, such as metamorphic change, sedimentation, crushing
in relation to particle size distributions, may be best modelled by such perturba.—
tion mechanisms, where an initial specimen of composition zg is subjected to a
sequence of perturba.tmns P1,---, Pn in reaching its current state z,:

=P1OTy, T2=pP20Z), .., Tpn=PnO%n-1,
so that
T, = (pLopao---0p,) 0. (9)
We now look at the logical consequences of such a process assumption.

The central limit theorem for compositions

It is well known that sequences of additive and multiplicative changes lead to
normal and lognormal variability through the magnificent central limit theorems



and (9) is crying out for such an interpretation. We can very simply relate (9) to
an additive central limit theorem by rewriting it in terms of logratios:

Tni P1Li Pni Zoi
log| === ) =4¢log| £ ) +--- 1 ( )}+1 (—-)
o ("nnD) { . (PID) - PnD o ZoDp

(¢t=1,..,D-1).
1If the perturbations are random then sums within the brackets will, under certain
regularity conditions which need not divert us here, tend for large n towards a
multivariate normal pattern of variability. It is a simple application of distribution

theory to deduce the form of the probability density function f(z) on the unit
simplex as

F(z) =det(27E) (g, - - zp)~"!
X exp |:—% {log (%’;—f) i p,} 5=l {log (3;-_;’) 2 #}T‘ ‘ (10)

(z € 8P), where z_p = (z1,...,Zp—-1), it is a D — 1 row vector and L is a positive
definite square matrix of order D — 1. This is the parametric class of additive

logistic normal distributions £P~1(u, £) described by Aitchison and Shen (1980).

CHARACTERISTICS OF PATTERNS OF
COMPOSITIONAL VARIABILITY

Measure of central tendency

In describing variability of vectors there are two related aspects. How can
we describe characteristics which in meaningful ways define (1) a centre around
which the variability takes place and (2) measures of dispersion around this centre.
Within (2) we include measures of the dependence between the various compo-
nents of the composition. It is worth recalling the arguments which determine
sensible centres and dispersions in R”. In such a sample space, in which ideas of
Euclidean distance dominate, it is claimed to be sensible to consider as centre
which minimises the average squared distance E{||y — x||*} and this turns out to
be simply E(y). For compositions and the simplex we have no long-established
distance measure such as Euclidean distance (though see Aitchison (1992)) but we
can discover a sensible definition of centre by a simple optimising argument.

Suppose that we have a probability distribution of compositions in the sim-
plex SP. Denote by r a generic composition. What should we use as centre,
or measure of central tendency, say £ = cen(z), of this distribution. A well-
established and commonly used information-theoretic measure of the divergence
of z from £ is the Kullback-Leibler (1951) directed divergence E{}_; &; log(¢:/z:)}.
It seems reasonable therefore to investigate the consequences of choosing £ to min-
imise this measure, subject to the condition that £ is a composition in SP so
that & + :-- 4+ £p = 1. This simple mathematical exercise yields the result that
& « exp(E{logz;}). Choosing the factor of proportionality to ensure that £ is a
composition leads to the definition of centre as

§ = cen(z) = C [exp (E{logz})]. (11)

At first sight this seems a very unfamiliar object until we realise that for any posi-
tive random variable z the formal definition of the geometric mean is exp(E{log z}).
Note here that although it seems that we have abandoned in the use of log(z)



our scale-invariant directive to use only ratios the complete expression for cen(z)
involves a closure operation C which ensures ratios. Indeed an alternative and
equivalent definition of centre could be used involving ratios at the first stage of
the computation, namely

woscln(se(E)) o

where g(z) denotes the geometric mean of the components of z. Any geologist who
has used the lognormal distribution A(u,X) to describe the pattern of variability
of a positive quantity will have used the geometric mean exp({log z}) = exp(u) in
their analysis, and it is worth noting that advocacy of the use of geometric means
(McAlister, 1879) even precedes Pearson’s 1897 warning. We shall refer to £ as the
geometric centre and note that for any fixed perturbation p, cen(poz) = pocen(:r:),
in analogy with E(¢t +y) = E(y) +¢ in (6) for unconstrained variability in RP.

It is worth digressing here to demonstrate the practical implications of t]:us
simple result. For a compositional data set

Ty, T2 - I1D
T21 T2 -+ Z2D

) ; : (13)
IN1 ZIN2 't IND

standard practice seems to be to take the arithmetic center Z = (z.,,...,Z.p),
where z.;, =Y _2,,/N. What we are advocating is the use of

C(g1, .- gD) = (g1, ---,9D)/(g1 + -+ gD) (14)

as centre of the compositional data set, where g; = ([]; zr:)'/V is the geometric
mean of the ith component over all N cases. And there can be a substantial differ-
ence as is illustrated by the three different but not untypical 3-part compositional
data sets of Fig. 2, where G and A denote the geometric and arithmetic cen-

tres. Note particularly Fig. 2c where the arithmetic centre is clearly an atypical
composition.

Measures of dispersion and dependence

There are a number of criteria which dictate the choice of any measure V(z) of

dispersion and dependence which forms the basis of characteristics of compositional
variability in terms of second order moments.

(a) Is the measure interpretable in relation to the specific hypotheses and prob-
lems of interest in fields of application?

(b) Is the measure conformable with the definition of centre associated with the
sample space and basic algebraic operation?

(c) Is the measure invariant under the group of basic operations, in our case the
group of perturbations? Is V(poz) = V(z) for every constant perturbation p?
(Recall the result in (6) that for y € RP the covariance matrix V is invariant
under translation: V(t +y) = V(y).)

(d) Is the measure tractable mathematically?

To ensure a positive answer to (a) we must clearly work in terms of ratios
of the components of compositions to ensure scale invariance. At first thought
this might suggest the use of variances and covariances of the form var(z;/z;) and
cov(zi/T;,Ti/T1). Unfortunately these are mathematically intractable because,
for example, there is no exact or even simple approximate relationship between



Figure 2a. Ternary diagram showing dif-
ferences between the arithmetic and geo-
metric centres.

Figure 2b. Ternary diagram showing dif-
ferences between the arithmetic and geo-
metric centres.

Figure 2c. Ternary diagram showing dif-
ferences between the arithmetic and geo-
metric centres.




var(z;/xz;) and var(z;/z;). Fortunately we already have a clue as to how to over-
come this difficulty in the appearance of logarithms of ratios of components both
in the central limit theorem at (10) and in the definition of the centre of compo-
sitional variability at (11) or (12). It seems worth the risk therefore of apparently

complicating the definition of dispersion and dependence by considering such dis-
persion characteristics as

(@) @@}

Obvious advantages of this are simple relationships such as var{log(z:/z;)} =
var{log(z;/z:)} and cov{log(z:/z;),log(zi/zx)} = cov{log(z;/z:),log(zk/z1)}-
There are a number of useful and equivalent ways (Aitchison, 1986, Chapter 4) in

which to summarise such a sufficient set of second-order moment characteristics.
For example, the logratio covariance matriz

B(z) = [o4] = [cov {log (;—D) log (%) }] (16)

using only the final component zp as the common ratio divisor, or the centred
logratio covariance matriz

I'(z) = [cov {log (a"’;—)) log (%) H (17)

My preferred summarising characteristic is what I have termed the variation

o 160 = = [ e (2) )] s

Note that T is symmetric, has zero diagonal elements, and cannot be expressed
as tMe standard covariance matrix of some vector. It is a fact, however, that X,
T and T are equivalent: each can be derived from any other by simple matrix
operations (Aitchison, 1986, Chapter 4). A first reaction to this variation matrix
characterisation is surprise because it is defined in terms of variances only. The
simplest statistical analogue is in the use of a completely randomised block design
in, say, an industrial experiment. From such a situation information about var(y; —
y;) for all 4, 7 is a sufficient description of the variability for purposes of inference.
Hopefully by now early warners of geologists such as Chayes (1960, 1962),
Krumbein (1962), Sarmanov and Vistelius (1959) have reinforced Karl Pearson’s
century-old warning and have at least raised uneasiness about interpretations of
product-moment correlations cov(z:, Z;)- Relative variances such as
var{log(z;/z;)} providé some compensation for such deprivation of correlation
interpretations. For example, 7;; = 0 means a perfect relationship between ; and
z; in the sense that the ratio z;/z; is constant, replacing the unusable idea of
perfect positive correlation between z; and z; by one of perfect proportionality.
Again, the larger the value of 7;; the more the departure from proportionality with
T;; = 0o replacing the unusable idea of zero correlation or independence between
z; and z;. For scientists who are uneasy about scales that stretch to infinity we
can easily provide a finite scale by considering 1 — exp(—,/7:;) as a measure of re-
lationship between components z; and x;. The scale is now from 0 (corresponding
to lack of proportional relationship ) and 1 (corresponding to perfect proportional
relationship). Note that if we are really interested in hypotheses of independence



these are most appropriately expressed in terms of independence of subcomposi-
tions. For example independence of the (1,2, 3)- and (4, 5)-subcompositions would
be reflected in the following statements:

orf (2 (2} <0 () ()} -0 0o

Finally we can provide an analogue of the rough-and-ready normal 95 percent
range of mean plus and minus two standard deviations. This is expressed in terms
of ratios z;/z; and a signed version of a coefficient of variation:

- \/var{log(z,/:r:_,)} 20
E{log(z:/z;)} ’ 120)
giving 1-2cv 1+2cv
g =L 2
(9:‘) = x4 - (9:') ’ (2

where g;, g; are the geometric means of the ith and jth components.

So far we have emphasised criteria (a), (b) and (d). Fortunately criterion
(¢) is automatically satisfied since, for example, T(p o ) = T(z) for any constant
perturbation p. Fig. 3 shows how the 3-part compositional data sets of Fig. 2
are effected by constant perturbations. We should also note here that the dimen-
sionality of the covariance parameter T is %D(D —1) and so is as parsimonious as
corresponding definitions in other essentially (D — 1)-dimensional spaces.

In the study of unconstrained variability in R® it is often convenient to have
available a measure of total variability, for example in principal component anal-
ysis and in biplots. For such a sample space the trace of the covariance matrix
is the appropriate measure. Here we might consider trace(I'), the trace of the
symmetric centred logratio covariance matrix I'. Equally we might argue on com-
mon sense grounds that the sum of all the possible relative variances in T, namely
Y. <; var{log(z:/ z;)}, would be equally good. These two measures indeed dif-
fer only by a constant factor and so we can define totvar(z), a measure of total
variability, as

totvar(z) = trace(I') = Z var {log ( ) } (22)

:(3

We may also note here that the scalar measure of distance (8) is compatible with
the above definitions of covariance analogous to the compatibility of Euclidean

distance with the covariance matrix of an unconstrained vector. As an illustration
of this consider how we -might construct a measure of the total variability for the

compositional data set (13). The definition at (22) suggests that we may obtain
such a total measure, totvarl say, by replacing each var{log(z:/z;)} in (22) by its
standard estimate. An alternative intuitive measure of total variation is surely the
sum of all the possible distances between the N compositions, namely totvar2 =
Y r<s Alzr,Z,), where here z., z, denote the rth and sth compositions in (13).
The easily established proportional relationship totvarl = {D/{N(N—1)}}totvar2

confirms the compatibility of the defined covariance structures and scalar measures
of distance for compositional variability.



Figure 3a. Ternary diagram showing the
effects of the constant perturbation (0.1,
0.3, 0.6) on the 3-part compositional data
set of Fig. 2a.

Figure 3b. Ternary diagram showing the
effects of the constant perturbation (0.1,

0.8, 0.1) on the 3-part compositional data
set of Fig. 2b. '

Figure 3c. Ternary diagram showing the
effects of the constant perturbation (0.1,

0.2, 0.7) on the 3-part compositional data
set of Fig. 2c.
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FROM THEORY TO PRACTICE

The logical necessities of scale invariance, subcompositional coherence and
the recognition of perturbation as the fundamental operation in the simplex have
led us to the adoption of certain logratio forms of summarising characteristics for
patterns of compositional variability. Not surprisingly these are compatible with
the logistic-normal class of distributions on the simplex which emerge from a study
of the genesis of compositional data through sequences of random perturbations.

.Let us see then what practical tools we now have at our disposal for the statisti-

cal analysis of compositional data. Earlier we said that any problem concerning
compositions can be expressed in terms of ratios and now we extend that claim to
logratios. Any convenient sufficient set of logratios can be used. For example the
set of final divisor logratios

yi = log ("z_‘) (’t =1,..,D- 1) (23)
Zp
can be used with inverse transformation
exp(y:) ;
T = =Yg =1)
exp(y1) + -+ - + exp(yp-1) + 1 4 ) (24)
1

Ip = 2
P exp(yr) + -+ + exp(yp—1) + 1

Note that transformations (23) and (24), which are asymmetric in the com-
ponents of the composition, form a mapping between the unit simplex SP and

(D-1)-dimensional real space RP~!. If we insist on a symmetric set of logratios
then we may take

T; e -
z“ L — | 1og (ﬁ) (2 —_— 1, seny D) (23)
with inverse

exp(z;)

Ir; =
exp(z1) + -+ + exp(2p)

(i=1,..,D). (26)

This is a transformation between the unit simplex SP and the unit hyper-
plane ¥, +---+yp = 0 in D-dimensional real space RP. The new constraint on the
transformed composition is not a transfer of the so-called constant-sum constraint
but a penalty for the insistence on a symmetric treatment of the components of
the composition. It is linked to the use of the singular centred logratio covari-
ance matrix I' at (17). In practice this singularity causes no interpretational or
computational problem in these days when pseudo-inverses of matrices abound in
statistical analysis and software.

Compositional data analysis is then easy. The simplest recipe for success
consists of four steps.

(1) Reformulate your compositional problem in terms of logratios of the compo-
nents.

(2) Transform your compositional data set into compatible logratios.

(3) Since you are now in real space and free of the constant-sum constraint,
simply apply the appropriate multivariate methodology associated with un-
constrained vectors.

(4) Reinterpret the inference from the statistical analysis of the logratios into
terms of the compositions.

Aitchison (1986) has already set out the wide variety of compositional prob-
lems which can be studied through the above logratio transformation techniques.
And clearly any problem of compositional data analysis can be studied through



this methodology. We shall examine some of these important problems and also
some new ones after we have studied various forms of resistance to, and confusion
of, this form of statistical methodology for compositional data analysis.

POCKETS OF RESISTANCE AND CONFUSION

There are a number of well-defined categories of response to the problems of
compositional data analysis. I hope readers do not recognise their position in any
of the categories.

The wishful thinkers

No problem exists (Gower, 1987) or, at worst, it is some esoteric mathematical
statistical curiosity which has not worried our predecessors and so should not worry
us. Let us continue to calculate and interpret correlations of raw components.
After all if we omit one of the parts the constant-sum constraint no longer applies.
Someday, somehow, what we are doing will be shown by someone to have been
correct all the time.

The describers

As long as we are just describing a compositional data set we can use any
characteristics. In describing compositional data we can use arithmetic means,
covariance matrices of raw components and indeed any linear methods such as
principal components of the raw components. After all we are simply describing
the data set in summary form, not analysing it (Le Maitre, 1982).

The openers

The fact that most compositions are recorded by first arriving experimentally
at an ‘open vector’ of quantities of the D parts constituting some whole and then
forming a ‘closed vector’, the composition, seems to have led to a particular form
of wishful thinking. All will be resolved if we can reopen the closed vector in some
ideal way and then perform some statistical analysis on the open vectors to reveal
the inner secrets of the compositions. The notion that there is some magic powder
which can be sprinkled on closed data to make them open and unconstrained dies
hard. Most recently Whitten (1995) takes as closed vectors major-oxide compo-
sitions of rocks expressed as percentages by weight, scales by whole rock specific
gravities to obtain ‘open vectors’ recorded in g/100cc. His argument depends on
attempts to establish that whole rock specific gravity is independent of the compo-
sition of the rock (to someone with virtually no knowledge of geology a seemingly
naive concept) by a series of regression studies in which whole rock specific gravi-
ties are regressed against at most two of the constituent major oxides. Percentages
of explanation of over 50 per cent are cavalierly regarded as indications of inde-
pendence. And why we may ask was not a regression on the complete set of major
oxides considered. These would certainly have led to even higher percentages of
explanation. Apart from this statistical criticism the consequent open vectors are
peculiarly placed geometrically, being only minor displacements from a different
constraining hyperplane. If only such openers would realise that in any opened
composition the ratios of components are the same as in the closed composition so
that any scale invariant procedure applied to the opened composition will be iden-
tical to that procedure applied to the closed composition. Opening compositions
is indeed superfluous folly.

The null correlationists

Pearson was the originator of this school. The idea developed from a study
of the composition (shape) of Plymouth shrimps; see Aitchison (1986, Chapter 3)
for an account of his ingenious early bootstrap experiment. Others, in particular



Chayes and Kruskal (1966) and Darroch and Ratcliff (1970, 1978) have attempted
this approach. The basic idea here is related to the openers’ ideas. Because of the
‘negative bias’ in correlations of raw components of compositions, zero correlation
obviously does not have its usual meaning in relation to independence. There must
be some non-zero value of such a correlation, called the null correlation, which
corresponds to ‘independence’. Usually the null correlation is surmised by some
opening out procedure, as for example the oft-quoted Chayes-Kruskall method.
The concept of null correlation is spurious and indeed unnecessary. All meaningful
‘concepts of compositional dependence and independence can be studied within the
simplex and in relation to the logratio covariance structures already specified.

The pathologists

A study of the compositional literature suggests that much of compositional
data analysis in the period 1963-85 was directed at trying to find some inspiration
from calculation of crude correlations and other linear methods. Those who were
aware that things go wrong with crude correlations attempted to describe the
nature of the disease instead of trying to find a cure. Thus we have many papers
with titles such as ‘An effect of closure on the structure of principal component’
(Chayes and Trochimczyk, 1978) and ‘The effect of closure on the measure of
similarity between samples’ (Butler, 1979).

The non-transformists

Despite his warning about the spuriousness of correlations of crude propor-
tions, Pearson would have been unhappy about the solution through logratio trans-
formations. He had bitter arguments (Pearson, 1905, 1906) with some of the redis-
coverers (for example, Kapteyn, 1903) of the lognormal distribution. This lay in
his distrust of transformations: what can possibly be the meaning of the logarithm
of weight? I had hoped that we were now sufficiently convinced, particularly in
geology, that the lognormal distribution has a central role to play in many ge-
ological applications. But the mention of a logratio of components still brings
forth that same resistance. What is the meaning of such a logratio is a question
posed by Fisher in the discussion of Aitchison (1982) and even more recently by
Whitten (1995). We hope that the analogy with the lognormal distribution and
the comments earlier that every piece of compositional statistical analysis can be
carried out within the simplex may mean that this resistance will soon collapse.

The sphericists

There have been various attempts to escape from the unit simplex to what are
thought to be simpler or more familiar sample spaces. One popular idea (Atkin-
son and Stephens in the discussion of Aitchison (1982), and Stephens(1982)) is to
move from the unit simplex SP to the positive orthant of the unit hypersphere
by the transformation z; = \/u; (i = 1,..., D) and then to use established theory
of distributions on the hypersphere. There are two insuperable difficulties about
such a transformation. "First, the transformation is only onto part of the hyper-
sphere and so established distributional theory, associated as it is with the whole
hypersphere, does not apply. There is clearly no way round this since the sim-
plex and hypersphere are topologically different: there is no way of transforming
a triangle to the surface of a two-dimensional sphere. As serious a difficulty is the
impossibility of representing the fundamental operation of perturbation on the
simplex as something tractable on the hypersphere. This is not surprising since
the fundamental algebraic operation on the hypersphere is rotation and this bears
no relationship to the structure of perturbation. The additional step of Stanley
(1990) in transforming z to spherical polar co-ordinates further complicates such
issues. Although the angles involved are scale invariant functions of the composi-
tion their relationship to the composition is bewilderingly complicated. Moreover



there would be no subcompositional coherence since in terms of our previous dis-
cussion scientist B would be transforming onto a hypersphere of lower dimension

withBimpossibly complicated relationships between the angles used by scientist A
and

The Dirichlet extenders

Many statisticians are attempting to extend the Dirichlet class of distributions
on the simplex in the hope that greater generality will bring greater realism than
" the simple Dirichlet class. Unfortunately I think they are likely to fail, since even
the simple Dirichlet class with all its elegant mathematical properties does not
have any exact perturbation properties. A further point on this will be made later
in the Discussion.

Conclusion

The only sensible conclusion, it seems to me, is to reiterate my advice to
my students. Recognise your sample space for what it is. Pay attention to its
properties and follow through any logical necessities arising from these properties.
The solution here to the apparent awkwardness of the sample space is not so

difficult. The difficulty is facing up to reality and not imagining that there is some
esoteric panacea.

BIPLOTS OF COMPOSITIONAL DATA

The biplot (Gabriel, 1971, 1981) is a well established graphical aid in other
branches of statistical analysis. Its adaptation for compositional data (Aitchison,
1990b, 1998) can also prove a useful exploratory and expository tool. Its great
strength is that it provides an approximate picture of the complete compositional
variability, not only of the dependence structure but also the relationship of in-
dividual cases to the compositional parts. The biplot is based on a fundamental
result of matrix theory, the singular value decomposition, but we can avoid the
mathematical and computational technicalities -because software can do the work

for us and we can concentrate on the simple and important aspects of interpreta-
tion.

For our practical purposes here of exploring a compositional data set such as
(13) consisting of IV cases of D-part compositions a biplot such as Fig. 4 consists
of an origin O which represents the centre of the compositional data set, a vertez
for each of the parts, labelled 1, ..., D and a marker for each of the IV cases, labelled
C1,...,cN. We term the join of O to a vertex 7 a ray Oi and the join of two vertices
1 and j the link ij. These features constitute a biplot with the following the main
properties for the interpretation of the compositional variability.

I vertex
¢, case marker

link

Figure 4. The basic elements
of a compositional biplot. 7 vertex



Links, rays and covariance structure

The links and rays provide information on the covariance structure of the

compositional data set.
4is Z;
ligP? =var{1og (z—,)}, (27)
]

ot (25}

cos(i05) = corr {log (5’(55) log (%)} : (29)

It is tempting to imagine that (29) can be used to replace discredited
corr(z;,z;) as a measure of the dependence between two components. Unfor-
tunately this measure does not have subcompositional coherence.

I have found a more useful result is the following. If links ¢j and kl intersect

in M the
cos(iMk) = corr {1og (;_,) log (z—’:) } . (29)

A particular case of this is when the two links are at right angles so that
cos(iMk) = 0, implying that there is zero correlation (independence) of the two

logratios. This is useful in investigation of subcompositions for possible indepen-
dence.

Subcompositional analysis

The centre O is the centroid (centre of gravity) of the D vertices 1,...,D.
Since ratios are preserved under formation of subcompositions it follows that the
biplot for any subcomposition s is simply formed by selecting the vertices cor-
responding to the parts of the subcomposition and taking the centre O, of the
subcompositional biplot as the centroid of these vertices.

Coincident vertices

If vertices 7 and j coincide or nearly so this means that var{log(zi/z;)} is
zero or nearly so, so that the ratio z;/z; is constant or nearly so.

Collinear vertices

If a subset of vertices, say 1,...,C is collinear then we know from our com-
ment on subcompositional analysis that the associated subcomposition has a biplot
that is one-dimensional, and then a technical argument leads us to the conclusion
that the subcomposition has one-dimensional variability. Technically this one-
dimensionality is described by the constancy of C — 2 logcontrasts of the compo-
nents Ty, ...,Zc. Such a logcontrast is simply a linear combination of the logarithms
of the components, @, logz; +- - - + ac log z¢ with the constraint a;+---+ac =0
ensuring that this linear form can be expressed as a function of component ratios.
Inspection of these constant logcontrasts may then give further insights into the
nature of the compositional variability.

Case markers and recovery of data

Such markers have the easily established property that Oc,.ji represents
the departure of log(z;/z;) for case ¢, from the average of this logratio over all
the cases. Let P and P, in Fig. 5 denote the projections of the centre O and
the compositional marker c. on the possibly extended link ji. Then Ocp.ji =
+|PP,||ji|, where the positive sign is taken if the directions of PP, and ji are the



same, otherwise the negative sign is taken. A simple interpretation can be obtained
as follows. Consider the extended line ;7 as divided into positive and negative parts
by the point P, the positive part being in the direction of ji from P. If P, falls
on the positive (negative) side of this line then the logratio of log(Zai/Zn;) of the
nth composition exceeds (falls short of) the average value of this logratio over all
cases and the further P, is from P the greater is this exceedance (shortfall); if P,
coincides with P then the compositional logratio coincides with the average. In

Fig. 5 the nth composition clearly has a logratio log(zni/Zn;) which falls short of
" the overall average of this logratio.

Figure 5.
Interpretation of case markers
in a compositional biplot.

A similar form of interpretation can be obtained from the fact that Oc,.O1
represents the departure of the centered logratio log(zni/g(z.)) of the nth com-
position from the average of this centered logratio over all replicates. In Fig. 3 let
Q. be the projection of the composition marker ¢, on the possibly extended ray.
Then Oc,.07 = £|0Q,|.|01|, the positive or negative sign depending on whether
Qn and the vertex 7 lie on the same side or opposite sides from O. We then have
the following simple interpretation. If Q, lies on the same (opposite) side of the
divided line as the vertex 7 then the centered logratio log(zni/g(zn)) of the nth
composition ¢, exceeds (falls short of) the average of this logratio over all cases,
and so we can infer that the ith component of the nth composition is higher (lower)
than average relative to the other components. Obviously also the further @, is
from O the greater is the divergence from the average.

Table 1 reports a compositional data set which will be new to everyone and
so no preconceived ideas will dictate our analysis. It consists of 20 6-part mineral
compositions of goilite rocks from a site on the edge of Loch Goil near Carrick
Castle. I am told that this is an interesting site so let us see what we can discover
about it.

Inspection of the variation array of Table 2 provides little insight into the
nature of variability of the goilite compositions of Table 1. In contrast, the rela-
tive variation biplot of Fig. 6, retaining 98.2 per cent of the total compositional
variability, allows easy identification of a number of characteristics. For simplicity
in our interpretation we shall use only the initial letters to identify the mineral
parts. First, we see that the de link is by far the longest indicating the greatest
relative variation in the ratios of components is between d and e. Secondly, the
near coincidence of the vertices a and ¢ implies that the a and c are in almost con-
stant proportion with the approximate relationship of a/c = 0.55 easily obtained
from Table 1 or from the estimate -0.605 for E{log(a/c)} in the variation array of
Table 2. Note that in the ternary diagram of the abc subcomposition in Fig. 7
the representative compositional points lie roughly on a ray through the vertex b.
Applying the approximate 95 percent range formula at (20) and noting that

[9¢ 9b 9c 94 ge gf] = [0.157 0.207 0.288 0.102 0.055 0.162]
and coefficients of variation for log(e/f) and log(a/e) are -0.716 and -0.214 we



Table 1. Six-part mineral compositions of 22 specimens of goilite.

a b c d e f

0.125 0.353 0.266 0.163 0.031 0.181

0.143 0.224 0.313 0.111 0.051 0.159
0.147 0.231 0.303 0.058 0.129 0.133

0.164 0.209 0.282 0.120  0.047 0.178

0.197 0.151 0.299 0.132 0.033 0.188
0.157 0.256 0.246 0.072 0.116 0.153
0.153 0.232 0.282 0.101 0.062 0.170
0.115 0.249 0.259 0.176  0.025 0.176
0.178 0.167 0.347 0.048  0.143 0.118
10 0.164 0.183 0.281 0.158 0.027 0.186
11 0.175 0.211 0.283 0.070  0.104 0.157
12 0.168 0.192 0.305 0.120  0.044 0.171
13 0.155 0.251 0.257 0.091 0.085 0.161
14 0.126 0.273 0.269 0.045 0.156 0.131
15 0.199 0.170 0.318 0.080 0.076 0.158
16 0.163 0.196 0.335 0.107  0.054 0.144
17 0.136 0.185 0.304 0.162 0.020 0.193
18 0.184 0.152 0.350 0.110 0.039 0.165
19 0.16% 0.207 0.300 0.111 0.057 0.156
20 0.146 0.240 0.250 0.141 0.038 0.184
21 0.200 0.172 0313 0.059 0.120 0.136
22 0.135 0.225 0.217 0.217 0.019 0.187

O 00 ~Jh U & WK

a: arkaigite b: broomite C: carronite
d: dhuite ¢: eckite f: fyneite

Table 2. Variation array for goilite compositional data set.

Column j
a b c d e f

0 0307 0.129 0502 0.617 0.225
0.275 0 0.270 0465 0.646 0.221
-0.605 -0.330 0 0.48 0628 0.213
0.432 0.706 1.037 0 1.071 0314
1.047 1322 1652 0.615 0 0.769
-0.027 0.247 0.578 -0459 -1.074 0

Rowi

0 Aoaonoe

Estimates below the diagonal are of E(log(x; /,) and above the diagonal of
Vvar{(log(x/x)}
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Figure 6. -
Biplot for goilite mineral compositions.

Figure 7. Ternary diagram of the (arkaig-
ite, broomite, arronite)- subcompositions
showing the near proportionality of arkaig-
ite to carronite.

of this composition.

Figure 8. Ternary diagram of the (dhuite,
eckite, fyneite)- subcompositions showing
the one-dimensional pattern of variability



obtain the ranges
0.073<e/f <1.59, 042 <a/c<0.71.

Thirdly and most strikingly we see the near-orthogonality of the ab (or cb)
link and the links de, df and ef. We can immediately infer that the ratios d/e, d/f
and e/ f are independent of the ratio of a/b or ¢/b. Another way of expressing this
feature is to state that the subcompositions (c,d, e) and (a,b) are independent.
A formal test of this hypothesis of subcompositional independence (Aitchison,
1986, Section 10.3) results in a significance probability 0.27 confirming our con-
clusion. Fourthly, the collinearity of the three mineral links de, df and ef and
the consequent one-dimensionality of the pattern of variability of this (d,e, f)-
subcomposition, confirmed by the corresponding subcompositional ternary dia-
gram of Fig. 8, implies some relationship between the proportions of the minerals
d, e, and f. Direct investigation by logcontrast principal component analysis leads
to the following eigenvalues and corresponding logcontrast principal components:

A = 12.79, 0.587logd — 0.785log e + 0.194 log f

31
Ay =0.0625, - 0.5_67 logd — 0._22;5 loge + 0.792 }og f 3L

The near-constant logcontrast arises from the near-zero second €igenvalue. More-
over the fact that the coefficients are roughly in the ratios of —2 : —1 : 3 suggests
that we can make a substantial simplification to our interpretation if we consider
the constant logcontrast

—3logd — loge +4log f = constant = 2.46,

where the constant value is estimated fromr the sample average of the logcontrast.
This can be simply converted into the approximate relationship;

St .

Whether this suggested ‘cubic hypothesis’ is worth further investigation as a geo-
logical finding is a matter for geologists not an ingeolate statistician.

As a final comment here we note that any subcomposition can be viewed
as a set of logcontrasts (Aitchison, 1984) and so are included in any logcontrast

principal component analysis for study of the dimensionality of the pattern of
compositional variability.

0]

SOME OTHER USEFUL TOOLS

As we have seen, the biplot can be a very useful data-exploratory tool. It
should, however, be used with caution and supported by appropriate statistical
analysis, as for example in the appropriate test of subcompositional independence
referred to in the previous section. Let me here provide two further related ana-

lytical tools which I have found useful in all my practical work on compositional
data analysis.

The predictive distribution as the fitted distribution

In much of statistical work we fit models to describe patterns of variability

of our observed data and there has been much discussion in statistical circles as
to what the appropriate distribution should be. It is clearly beyond the scope of

this paper to argue any case here but let me direct your attention to the use of



what have become known as the predictive distributions. Instead of simply insert-
ing the maximum-likelihood estimates in the logistic-normal £P~1(y, ) density
function (the estimative method), as it were putting all our eggs in one basket,
we average all the possible logistic-normal density functions taking account of the
relative plausibilities of the various (i, £) parametric combinations. The resulting

predictive distribution is what can be termed a logistic-Student distribution with
density function

" f(z|data) « (z1...zp)~?!

x [1 ¥ {Iog (%’f—) - #} {-1n@a+n5Hz} {I"g (E:;?D) 5 F}T]
(33)

for compositional data set (13). For large data sets there is little difference be-
tween estimative and predictive fitted distributions, but for moderate composi-
tional data sets the difference can be substantial. The fact that geological sets
often have N small (a few rock specimens) and D large (ten or more major ox-
ides) should recommend the use of the predictive distribution in applications to
compositional geology. Fig. 9 shows the difference in the estimative and predictive
density functions for the 2-part compositional data set consisting of the first eight
(d, e)-subcompositions of the goilite data set, arguably large i comparison with
commonly analysed geological data sets. Note the sensibly conservative predictive
approach with its more disperse density function.

N/2

Figure 9. Estimate and predictive density functions based on
eight (dhuite, eckite)-subcompositions of the goilite data set.

| Estimative \
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Eslimative and predictive densilies
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First component of 2-part composition

Atypicality indices

The fitted density function assigns different plausibilities to different compo-
sitions. Fig. 10 shows a 3-part compositional data set in a ternary diagram with
some contour lines of the fitted predictive distribution. A composition such as C
near the centre is clearly more probable than one such as B in the less dense area.
B is more atypical than C of the past experience of goilite. We can express this
in terms of an atypicality index, which is, roughly speaking, the probability that



a future composition will be more typical (be associated with a higher probability
density) than the considered composition. Technically the atypicality index A(z*)
of a composition z* is given by _

A(z) = /1; f(z|data)dx where R = {z : f(z|data) > f(z*|data)}, (34)

and this is easily evaluated in terms of standard incomplete beta functions; for
: details see Aitchison (1986, Section 7.10). Atypicality indices lie between 0 and 1,
with near-zero corresponding to a composition near the centre of the distribution
and near 1 corresponding to an extremely atypical composition lying in a region
of very low density. Atypicality indices are therefore useful in detecting possible
outliers or anomalous compositions. For inspection of a given data set it is ad-
visable to use the now standard jack-knife or leaving-one-out technique to avoid
resubstitution bias in assessing the atypicality index of any composition in the
data set. Again atypicality indices for such a procedures are readily computable.

In the goilite example above two compositions 14 and 22, circled in Fig. 5
have atypicality indices 0.999 and 0.957 greater than 0.95. From their positions
in Fig. 5 and the interpretation of case markers as described above it is clear that,
for composition 14 this is probably due to a combination of its maximally high
ratios otp‘? to d, e to d, and b to a; and for composition 22 its minimally low ratios
of f to d, e to d, and e to f; facts easily confirmed from Table 1.

R
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Figure 10. Ternary diagram showing a 3-part cpn:!positioqa.l data set
and contour lines associated with the fitted predictive density function.

MORE COMPLEX PROBLEMS

Within the structure set up for discussion of problems within the simplex we
could claim that it is possible to tackle any compositional problem. Such a claim
might require substantial statistical research but that is a role that statisticians
are very willing to undertake. Let me indicate with a number of practical examples
just how some of the problems I have encountered in geology may be approached.

Joint variability

Geochemical compositions are commonly reported in terms of percentages by
weight of major axides and parts per million of trace elements. Seldom, if ever,



is the joint variability of these two aspects fully studied by statistical techniques
which take full cognisance of the constrained nature of the data. No methodology
seems to have emerged for the systematic study of the pattern of joint variability
of the major oxides and the trace elements of compositions within a rock type
and the determination of the geochemical nature of difference between rock types.
Indeed, since introducing and advocating the logratio approach to the statistical
analysis of compositional data I have been repeatedly asked if and how the logratio
approach can be applied to such major-oxide, trace-element compositions. The
present deficiency in the methodology probably arises from a combination of two
inhibiting factors: the well-known failure of standard statistical techniques, devised
for unconstrained data, in the analysis of ‘closed data’ and the awkwardness of the
different units in which the major oxides and trace elements are reported. This
is surprising since there is no difficulty in accommodating compositions involving
components measured in different units. If there is a conceptual perturbation
which would bring all components to the same units of measurement then, because
of the invariance of logratio covariance structures under the group of perturbations,
we can simply treat the composition as if the units were in common units. Only the
mean or central position is altered by perturbation; covariance structure including
the biplot remains unchanged. Again a biplot may aid in exploring the nature of
the dependencies inter and intra the major and trace aspects of the compositional
variability.

Conditional variability

It could be argued that the greatest practical tool that statisticians have
ever produced is that of regression analysis in its multitude of forms, from Gal-
ton’s basic ideas of 1889 through analysis of variance and covariance to the more
recent generalisations known under the title of general linear models and their
multivariate counterparts. In all of these we are attempting to explain the pat-
tern of variability of some ‘response’ of an experimental unit, such as a category
(categorical, including binary, regression), quantity or vector of quantities (simple
univariate or multivariate regression), depends on other factors or covariates of
the experimental unit. Such tools contain the facility for deciding which of the
factors or covariates contribute significantly to the pattern of variability of the
response. All of these conditional modelling tools are available to compositional
data analysts within the above framework, whether the composition plays the role
of response or of covariate. Examples of the application of such conditional mod-
elling can be found in Aitchison (1986), for example in studying the nature of the
dependence of the (sand, silt , clay) composition of sediments in an Arctic lake on
depth, in studying the dependence of a type of a rock, Permian or post-Permian,
on its major-oxide composition; in investigating the dependence of the (fesh, skin,
stone) composition of this year’s crop of yatquats on the composition of last year's
yatquats and on the nature of the treatment (hormone or placebo) of the trees.

The last example is of course non-geological. We can, however, illustrate the
exploratory and interpretative power of this technique through an adaptation of
the biplot to a conditional biplot which in its representation concentrates on the
dependence of responsé to covariate through a geological example. The data set
consists of 21 tektites (Chao, 1963; Miesch et al, 1966), for which the two com-
positions are 8-part major-oxide compositions and 8-part mineral compositions
as described in Table 3. These are subcompositions of the original data set, this
reduction being adopted only for the sake of simpler exposition. While experi-
mentally these two types of compositions are determined by completely different
processes they are obviously chemically related since the minerals are themselves
more complicated major oxide compounds. The challenge of the conditional bi-
plot of Fig. 11 is whether it can at least identify these relationships from the
compositional data alone, without any additional information about the chemical
formulae of the minerals, and hopefully provide other meaningful interpretations
of the data.



Table 3. Major-oxide and mineral compositions of 21 tektites.
Major oxide compositions
Case SiO; K,0 NaO CaO MgO Fe,0; TiO P,0;

70.83 186 120 0.52 046 0030 065 0.005
80.10 199 137 049 042 0.110 0.66 0.020
80.17 224 153 056 037 0.1830 0.60 0.030
7840 190 136 055 059 0.050 0.69 0010
7837 243 1.84 0.78 0.70 0.050 0.59 0.020
77.21 242 180 096 050 0.060 0.62 0.060
78.19 223 171 065 073 0230 0.74 0.040
76.11 238 159 081 059 0220 0.74 0.040
76.68 1.81 127 059 056 0.005 0.83 0.010
76.09 2.04 160 0.67 054 0230 0.80 0.040
7625 222 163 074 0.74 0270 0.74 0.050
7623 203 150 051 0.58 0330 0.77 0.050
7559 242 172 079 066 0200 0.73 0.050
75.58 240 184 079 095 0210 0.71 0.050
7538 221 177 079 095 0320 0.78 0.060
7551 225 1.61 0.74 0.7 0350 0.75 0.050
75.13 184 142 054 061 0.170 0.90 0.050
7494 1.84 150 066 043 0.130 0.86 0.040
7336 193 144 0.61 0.75 0310 0.87 0030
7270 1.63 143 041 070 0320 099 0.070
21 71.89 1.60 1.28 0045 0.78 0270 1.05 0.040

NERSIRGEORISveNauswN -

Mineral compositions

Case qu or al an en ma il ap
1 62.02 1099 10.15 258 1.15 0040 123 0.010
2 61.13 11.76 11.59 230 1.05 0.160 125 0.050
3 59.17 1325 1294 258 092 0260 1.14 0.070
4 5893 1123 11.50 266 147 0070 131 0.020
5 53.79 1436 1556 3.74 174 0.070 1.12 0.050
6 5254 1430 1522 437 124 005 118 0.140
7 5520 13.17 1446 296 182 0330 141 0.090
8 5278 14.06 1345 3.76 147 0320 141 0.090
9 5790 10.69 10.74 286 139 0.010 158 0.020

10 54.19 1205 13.53 306 134 0330 152 0090
11 5322 13.12 13.79 3.34 184 0390 141 0.120
12 5538 1199 12.69 220 144 0480 146 0.120
13 5124 1430 14.55 359 1.64 0290 139 0.120
14 50.15 14.18 1556 3.59 237 0300 135 0.120
15 50.97 13.06 14.97 3.53 237 0460 148 0.140
16 5239 1329 1362 3.34 167 0510 142 0.120
17 5492 10.87 1201 235 152 0250 171 0.120
18 5401 10.87 1269 3.01 107 0.190 163 0090
19 5199 1140 12.18 283 1.87 0450 1.65 0.070
-20 5295 963 1209 158 174 0460 1.88 0.170
21 5279 945 10.83 197 194 03% 199 0.090

qu: quartz or: orthoclase al: albite an: anorthite
en: enstatite ma: magnetite il: ilmenite  ap: apatite
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Figure 11. Conditional biplot showing the depeqdpnce of the
mineral compositions on the major-oxide compositions for the
tektite compositional datg set.

Table 4. Oxides and associated minerals in tektite study.

-

Oxide Mineral Abbreviation Formula

SiO, Quartz qu SiO,

K,0 Orthoclase or KAISi;O,
Nz,0 Albite al NaAlSi,O,
Ca0 Anorthite an CaAl,Si,04
MgO Enstatite - en MgSiO,

Fe,O, Magnetite ma Fe,0,

TiO Iimenite il FeTiO,

P;0, Apatite ap Cay(F,CIXPO,);




First we report that the covariance aspects of the biplots constructed sepa-
rately for the major-oxide and mineral compositions are almost identical with the
relevant parts of the conditional relative variation biplot. A second interesting
feature of the diagram is that it is indeed successful in identifying which oxides
are associated with which minerals. From Table 4 we see that, apart from SiO,
each of the other seven major oxides is associated with only one of the minerals,
for example MgO is contained only in enstatite. In the biplot diagram the co-
sine of the angle between the rays of a major oxide and a mineral is, relatively
‘speaking, a measure of association between oxide and mineral. A striking feature
of the diagram is the way in which it demonstrates the close association of each
of ihe seven wajor uxides, lor exampie FepU3, with its corresponding mineral,
magnetite and P;Os with it corresponding mineral apatite. Moreover, even SiOg,
which is a constituent of all eight minerals, is nevertheless primarily identified with
quartz which is simply its oxide self. Note the fundamental lesson of this analysis.
Here am I, a statistician with no geological knowledge, analysing a compositional
data set and discovering, without any geological input simple connections between
minerals and major oxides.

Miesch et al. (1966) put forward a theory of the formation of tektites which
they identify as the independence of the set of three ratios (FeoO, MgO, P203)
/ SiO; from the set of three ratios (CaO, Na;O, K20)/SiO,. This in turn im-
plies that the subcompositions (FeoO, MgO, P20s), (CaO, Nas0, K20) must be
independent and we would then be disappointed in failing to identify the neces-
sary approximate right angles within Fig. 10. For example, the FeoO-P20s and
Ca0-Na;O links are approximately parallel instead of orthogonal, throwing con-
siderable doubt on the theory. Rejection of the theory can be confirmed by a full
statistical analysis testing the hypothesis of independence of the two subcomposi-
tions by the procedure described in Aitchison (1986, Section 10.3) for which the
significance probability is 0.04.

A similar example appears in Aitchison (1990b), where the artefact CIPW
norms (mineral compositions constructed by a complicated formula from major
oxide compositions) are related to the major oxide compositions. Success here is
not surprising but raises the question of whether a fitted statistical conditioning
model] relating minerals to major oxides as described above might be a better
means of constructing mineral norms from major oxides.

Irregular data

A brief comment on irregular data problems in compositional data analysis
is perhaps worth making here since it appears from recent papers in Mathematical
Geology that an important general technique, namely the EM algorithm, has gone
unnoticed by mathematical geologists in relation to irregular data, in particular in

1 3 \ s 1001.
advocating so-called replacement strategies (Sanford, Pierscn and Crovelli, 1003

Chang, 1993). The data set of Table 5 contains ten 5-part compositions suffering
from irregularities of different types. The notes to Table 5 specify the nature of
these irregularities. We can identify two basic questions associated with such an
irregular compositional data set.
1. Can we test whethér the irregular compositions (whether trace, missing, amal-
gamated, or indeed combinations of these) conform with the pattern of vari-
ability of the full compositions?
- 2. Given that we have conformity, can we estimate the characteristics of the

pattern of variability and obtain the important fitted predictive distribution?

The answer to both these questions is yes and the technique is the easily
applicable EM algorithm. This is simply a two-step iterative process, whereby
trace, missing and amalgamated components are replaced at an E-step by esti-
mated values based on current iterates of the characteristics; then new iterates of
the characteristics are obtained at the M-step by maximisation of the likelihood
based on the current completed compositional data set. These are straightforward
computational procedures which take full account of the multivariate nature of the



Table 5. An illustrative irregular compositional data set.

1 0370
2 0442
3 0446
4 0412
5 0414
6 0486
7 0455
8§ 0429
9 0453
10  missing
11 0.767
12 0.446

Notes

trace: This indicates in the preliminary determination process that led to reporting
of the composition the quantity of the part fell below the minimum detection value.
What is reported is the composition of the non-trace subcomposition.

missing: This.indicates that the preliminary determination failes for whatever
reason record the quantity of this part. What is reported is the composition of

b c
0.091 0.342
0.383 0.029
0.330 0.046
0.117 0.267
0.129 0.234
0.340 0.025
0.166 0.176
0.469 trace
0.465 trace
0.549 0.088
missing trace
(b+c= 0.3530)

the non-missing subcomposition.

amalgamation: This indicates that the preliminary determination process could

d

0.095
0.077
0.122
0.096
0.158
0.094
0.096
0.057
0.082
0.262
0.135
0.116

e

0.102
0.069
0.056
0.108
0.065
0.055
0.107
0.045

0.101
0.098
0.085

record only the combined quantity of the amalgamated parts.

Table 6. Typical river and fishing location pollutant compositions

River 1

River 2

River 3

a

( 0.6541
0.5420

0.2450
0.2503

0.3334
0.4332

Location A | 0.4014

Location B

0.3820

0.4033
0.4706

Location C | 0.3140

\ 0.2460

pollutant

b

0.1553
0.3497

0.2924
0.0420

0.1704
0.1409

0.1864
0.1169

0.2300
0.2207

0.1060
0.2278

c

0.1129
0.0349

0.2450
0.5571

0.2026
0.1352

0.2619
0.3480

0.2168
0.1594

0.3896
0.3488

d

0.0777 \
0.0734

0.2176
0.1506

0.2936
0.2907

0.1503
0.1531

0.1498
0.1493

0.1904
0.1774 )




data, unlike Sanford, Pierson and Crovelli, (1993) and Chang (1993), who adopt an
unnecessarily univariate approach. The technical details need not concern us here
since the computational procedures are available within a new software package
NEWCODA (Aitchison, 1997b).

An endmember problem

By an endmember problem I mean one in which some target D-composition
-X is visualised as arising from some convex linear combination 7 = (my, ..., T¢) of
C source or endmember compositions z,, ..., Tc, as

X =mz + -+ TcTc. (33)

One such problem is where information is available only on the target in the
form of a compositional data set and the objective is to attempt to find fixed
endmember source compositions from which the target compositions could have
arisen through varying mixtatres. of these source compositions. For a successful
approach to this difficult problem, see Renner (1991, 1992, 1993, 1995, 1996).
An interesting endmember problem of a different nature arises in some forms of
pollution detection (Aitchison and Bacon-Shone, 1998). The following example
illustrates how such a problem can be resolved.

Sources of pollution in a Scottish loch

A Scottish loch is supplied by three rivers, here labelled 1, 2, 3. At the
mouth of each 10 water samples have been taken at random times and analysed
into 4-part compositions of pollutants a, b, ¢, d. Also available are 20 samples,
again taken at random times, at each of three fishing locations A,B,C. Space
does not allow the publication of the full data set of 90 4-part compositions but
Table 6, which records the first and last compositions in each of the rivers and
fishing locations, gives a picture of the variability and the statistical nature of
the problem. The problem here is to determine whether the compositions at
a fishing location may be regarded as mixtures of compositions from the three
sources, and what can be inferred about the nature of such a mixture. Although
there is information about the source compositions this is not precise since each
source is defined only by an observed cluster of compositions. As a first approach
to this problem Aitchison and Bacon-Shone (1998) propose that the variability
in each of the source compositions be summarised by using assessments of their
distributions obtained from the available samples. Thus a basic distributional
problem that faces us is to find the distribution of X in (35) for a given 7 and
for given independent (logistic normal) distributions of zj,...,Zc. The existence
of an excellent approximation to this distribution allows the computation of the
likelihood function, from which all statistical analyses can proceed. It is then
possible within this framework to test whether the mixing vector p is fixed; if so,
to estimate it and, if not, to describe the nature of its variability, all with a view

to making inferences about the relative responsibilities of the rivers as sources of
pollution.

DISCUSSION

Addition (and subtraction) and multiplication (and division) play an intrigu-
ing role in many areas of statistics. Compositional data analysis is no excep-
tion. Scale invariance, subcompositional coherence and perturbation invariance
all lead us to ratios of components and division. The central limit theorem
and simplifying power of the logarithmic function which, by its basic property
log(zi/z;) = logz; — log z;, converts awkward division into simpler subtraction,
lead us to consideration of logratios. Such a commitment makes consideration
of the addition of components more awkward; for example, if we assume that a



D-part composition is logistic-normal there is no simple form for the distribution
of log((z: + z;)/zk). This is similar to the awkward problem of determining the
distribution of the sum of two lognormal variables. But these are mathematical
and computational difficulties and should not detract us from consideration of ge-
ological problems of an additive or linear form in the components. For example,
for a major-oxide compositional data set there is no conceptual difficulty in testing
a linear hypothesis such as A + 2B = 3C + 2D within the methodology described
above. An exact test of such a hypothesis is not available but we can provide, as in
"most practical statistical work, reliable approximations. An excellent example of
the practical use of such approximations is in the pollution problem just discussed.

Although for most analysts the simplest way of handling compositional data
will be to immediately transform to logratios diehard non-transformists can be
readily accommodated, by way of basic operations in the simplex. For example,
analogous to models arising in general linear modelling, an appropriate model
for the study of conditional variability of a composition = on a covariate ¢ is the
following:

z = agl(tB) o p, (35)
where agl is the multivariate additive generalised logistic function

agl(u) = (exp(u1), ...,exp(uc), 1) / (exp(u1) + ... + exp(uc) +1),  (36)

as defined in Aitchison (1986, Section 6.15), B is a matrix of regression coefficients
and p is a random perturbation playing a role similar to additive random error in
simple regression: see also Aitchison and Shen (1984).

I have confined discussion of classes of distributions on the simplex to the
additive logistic normal class simply because I have found it the most useful in
my own compositional data analysis. Such an assumption about the pattern of
variability of a compositional data set, or about the perturbation in any study of
conditional variability, should be tested, and there are many such tests available
(Aitchison, 1986, Section 7.3). Where tests of the validity of the distributional
form fail the multivariate extension of the Box-Cox transformation may be ex-
plored (Aitchison, 1986, Section 13.2; Barcelé, Pawlowsky and Grunsky, 1996)
and will often yield a closer description of the variability. Such a better descrip-
tion, however, is achieved at the expense of interpretation, particularly in relation
to aspects of independence hypotheses and subcompositional studies. There are
other logistic-normal classes within the simplex suited to certain types of applica-
tion (Aitchison, 1986, Sections 6.13-14). For example the multiplicative logistic-
normel class is equivalent to the multivariate normality of the logratios

log(l—xl) ,log(l "'Il-:v:z) ,...,log(l_xl_.”_mp) (37)

is obviously highly relevant to the study of Niggli or remaining space hypotheses
about the nature of the formation of compositions, as in Chayes (1983), though as
yet unexplored. There ‘are other even more general parametric classes available,
for example the A-distribution and its associates (Aitchison, 1985). The great ad-
vantage of this class is that it includes as a special case the Dirichlet class, the class
having the ultimate in compositional independence properties, though requiring
more computational effort in application. With recent advances in computational
techniques, in particular the powerful MCMC procedures, this is increasingly more
viable as a basis for compositional data analysis.

Much has been left untouched here. A question which will surely arise in
discussion is the problem of zero components: you cannot take the logarithm of
zero so how can logratio analysis cope. If the zeros can be regarded as minute trace
components then a way of proceeding is by a series of finite but small replacements
accompanied by a sensitivity analysis on the effects of varying replacement values.




If the zeros truly imply that some parts are absent from the composition then the
scientific problem is more fundamental. Do compositions with absent parts differ
in the nature of their variability, or in their effect on some response for example
in a melting experiment, from that of full compositions. Such questions can be
addressed within the logratio framework, as for example in an admittedly non-
geological problem in Aitchison (1986, Section 11.6). I would welcome consultation
on any such problems from any reader with such a zero problem. Other major
areas of compositional interest are in compositional time processes; and in spatial
‘or regionalized compositions, where the work of Pawlowsky and her colleagues has
been fundamental; see for example, Pawlowsky (1986) and Pawlowsky, Olea and
Davis (1995). There are limitations to a simple statistician’s comprehension of the
complexity of geological problems.

Finally geologists should be aware that they are by no means the only disci-
pline faced with compositional data analysis. In nutritional studies physiologists
meet whole-body compositions into water, protein, fat and other parts; in eco-
nomics household budget pattern of proportions of income spent on food, housing,
transport, and other commodity groups is a composition; in psychology and sociol-
ogy there is increasing interest in time budgets, where for example the proportions
of the day spent by an academic statistician in teaching, consultation, research,
administration and so on form the composition of interest. What many or indeed
all of these disciplines including geology seem reluctant to do is to formulate their
compositional problems in firm numerate form. I have in particular scoured the
geological literature and found hardly any precise statements of the hypotheses of
interest, at least not anything a statistician would recognise as a testable hypoth-
esis. Instead there is a tendency to be happy with vague, non-specific, qualitative
talk with descriptive data-exploratory statements. What are the hard hypotheses
of geology? For example, tell us precisely in terms of compositional components
what a particular cogenetic hypothesis is and we may be able to pin down the ap-
propriate testing procedure. Spell out for us in numerate terms your petrogenetic
mixing hypothesis and we can attempt to approximate the distributions required
to perform the necessary tests and estimation. Describe to us more clearly what
you mean by a trend in a suite of compositions and we may be able to provide you
with a means of detecting whether there is trend or non-trend variability. Make
clear to us the true purpose of melting experiments with mixtures and we may
be in a position to advise you on the design of efficient experiments and how to
determine the dependence of the final product on the ingredients and conditions
of the experiments. The problems here I believe are a question of patient commu-
nication and I hope that this conference may provide an excellent forum for the
encouragement of such collaboration.

The proof of any pudding is in the recipe and in the skill of the cooks to
implement that recipe. So it is here. I think that I have a promising recipe. I

hope you have the energy to cook and give your verdict on the meal. Happy
logratioing!
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