A great anniversary: 40 years after the IAMG was founded during the International Geological Congress in Prague, and 40 years after the Soviet invasion of that city and the country of Czechoslovakia, we still have a healthy Association, while Prague and the new Czech Republic have prospered as well. Both, the country in 1989, and this organization in 2008, have changed their names: In a run-off vote concluded on June 9, the members of IAMG chose the name International Association for Mathematical Geosciences to replace the old, original name International Association for Mathematical Geology.

The 2008 election is the second time for our organization to choose officers and councilors for the next four years by on-line voting, and the balloting on the name change was also conducted over the internet. With the help of Dragonfly, the firm retained to set up the election webpages as well as redesign the IAMG website, the whole election process went smoothly. The results are shown on p. 4 of this Newsletter. A total of 176 of our 566 members in good standing cast their votes electronically. While a 31% participation doesn’t seem like a large proportion, it is apparently similar to other scientific organizations, and also typical for political elections in the USA.

While 2004 was the first time we ventured into the modern electronic age by voting on-line, we were, of course, not the first to change to web-based voting. For instance, AGU has electronic elections and GSA set up on-line voting in 2002. AAPG initiated online voting in the same year as we did, and EAGE started with e-mail ballots in 2005 and is now using a website link to a ballot page. Most organizations have had good results but allow paper ballots for those unable or unwilling to vote via internet; however, the majority of the votes are cast electronically. We hope that the new system implemented by Dragonfly will work for IAMG both for general elections and ballots on other issues. Let us know your comments or complaints.

Harald S. Poelchau
Officers

President: Frits P. Agterberg,
Geological Survey of Canada, 601 Booth St., Ottawa,
Ontario K1A 0E8, Canada, Tel: +1 613 996-2374,
Fax: +1 613 996-3726, E-mail: agterber@nrcan.gc.ca

Vice President: Nick Fisher, ValueMetrics, Suite 251,
184 Blues Point Road, McMahan's Point, NSW 2060, Australia,
Tel: +61 2 9922 1623 / +61 407 017 016, Fax: +61 2 9922 1635,
E-mail: nif@valuemetrics.com.au

Secretary General: Clayton V. Deutsch, University of Alberta,
204C Civil/Electrical Eng. Bldg, Edmonton, Alberta T6G 2G7,
Canada,
Tel: +1 780 492 9916, Fax: +1 780 492 0249,
E-mail: cdeutsch@ualberta.ca

Treasurer: Gina A. Ross, IAMG, c/o Gina Ross, PO Box 442504,
Lawrence, KS 66044-8939, USA, Tel: +1 785 842 6092,
E-mail: gr_iamg@hotmail.com

Past President: Graeme F. Bonham-Carter,
Geological Survey of Canada, 601 Booth St., Ottawa,
Ontario K1A 0E8, Canada, Tel: +1 613 996 3387,
Fax: +1 613 996 3726, E-mail: bonham-carter@nrcan.gc.ca

Committee Chairs

Awards Committee: Stephen Henley
Resources Computing International Ltd, 185 Starkholmes Road,
Matlock, Derbyshire, United Kingdom DE4 5JA,
E-mail: stephen.henley@btconnect.com

Distinguished Lecturer Committee: Sean McKenna
Technical Staff, Geohydrology Department, Sandia National
Laboratories, P.O. Box 5800 MS0735, Albuquerque,
NM 87185-0735, USA,
Tel: 505-844-2450, Fax: 505-844-7354,
E-mail: samcken@ualberta.ca

Publications Committee: Michael Ed. Hohn
West Virginia Geological Survey, Mont Chateau Research Center,
P.O. Box 879, Morgantown, WV 26507-0879, USA,
E-mail: hohn@geosrv.wvnet.edu

Students Affairs Committee: Helmut Schaeben
Technische Universität Bergakademie Freiberg,
09596 Freiberg, Germany
E-mail: schaeben@geo.tu-freiberg.de

Councilors

Antonella Buccianti, Dipartimento di Scienze della Terra,
Università di Firenze, Via La Pira 4 - 50121, Firenze, Italy,
Tel: +39 055 2757496, Fax: +39 055 284571,
E-mail: buccianti@unifi.it

Qiuming Cheng, Dept. of Earth and Space Science and Engineering,
York University, 4700 Keele Street, Toronto, Ontario M3J 1P3,
Canada, Tel: +1 416 736 2100 (Ext: 22842), Fax: +1 416 736 5817,
E-mail: qiuming@yorku.ca

Roussos Dimitrakopoulos, Department of Mining, Metals and Materials Engineering, McGill University, Montreal H3A 2A7, Canada,
Tel: +1 514 398-4986, E-mail: roussos.di@mcgill.ca

Brigitte Doligez, Institut Français du Pétrole, 1 et 4 avenue de Bois Preau, 92506 Rueil-Malmaison, Cedex, France,
Tel: +33 1 4752 7211, Fax: +33 1 4752 7067,
E-mail: Brigitte.Doligez@ifp.fr

Ian Jackson, British Geological Survey, Kingsley Dunham Centre,
Keyworth, Nottingham, U.K. NG12 5GG, Tel: +44 115 936 3214,
Fax: +44 115 936 3269, E-mail: ij@bgs.ac.uk

Maria João Pereira, Instituto Superior Técnico - CMRP,
Av. Rovisco Pais, 1049-001 Lisboa, Portugal,
Tel: +351 2184 17831, Fax: +351 2184 17389,
E-mail: maria.pereira@ist.utl.pt

Special IGC Councilor: Felix Gradstein,
Geological and Paleontological Museum, University of Oslo,
Sars' gate 1, N-0562 Oslo, Norway,
Tel: +47 22 851 663, Fax: +47 22 851 832,
E-mail: felix.gradstein@nhm.uio.no

Editors

Computers & Geosciences: Eric Grunsky
Geological Survey of Canada, Natural Resources Canada,
601 Booth St., Ottawa, Ontario K1A 0E8, CANADA,
Tel: +1 613 992 7258, E-mail: egrunsky@iamg.org

Mathematical Geosciences: Roussos Dimitrakopoulos
Department of Mining, Metals and Materials Engineering,
McGill University, Montreal H3A 2A7, Canada,
Tel: +1 514 398-4986, E-mail: roussos.di@mcgill.ca

Natural Resources Research: Jerry Jensen
Department of Chemical and Petroleum Engineering,
University of Calgary, 2500 University Dr. NW, Calgary, AB T2N
1NT, CANADA, E-mail: jjensen@ucalgary.ca

IAMG Monograph Series: Jo Anne DeGraffenreid
P.O. Box 353, Baldwin City, KS 66006-0353, USA,
Tel: +1 785 594 6624, E-mail: msdeg@mchsi.com

IAMG Newsletter and Website: Harald S. Poelchau
10773 Lanett Circle, Dallas, TX 75238, USA,
Tel: 214-221-1080, E-mail: hs@iamg.org
It is important that we keep track of our past. The original idea of founding the IAMG occurred to Richard Reyment in the mid-1960s. Dr. Chester Bliss of the International Biometric Society helped mapping out the steps to be taken. His own association, which had R.A. Fisher as its first president (1947-49), was flourishing at the interface between mathematical statistics and the biological sciences. We would fulfill a similar role within the geosciences. The International Statistical Institute (ISI) became one of our parents, the other one being the International Union of Geological Sciences (IUGS). Richard’s “call” went out from Stockholm to some 200 or more geologists and statisticians. Almost all replies were very positive. It was decided that we would have quadrennial meetings coinciding with the International Geological Congresses. We continue to be formally affiliated with both IUGS and ISI. This year Daniel Merriam officially became the first IAMG Historian and Graeme Bonham-Carter now is our IAMG Archivist. Our visibility should be further increased. Recently, we have become the 15th International Partner of the International Year of Planet Earth (IYPE). We subscribe to IYPE’s aim to “ensure greater and more effective use by society of the knowledge accumulated by the world’s 400,000 Earth scientists”. Our forte is mathematical modeling and quantifying solid Earth uncertainties. Jorgina Ross and I have participated in the IYPE Global Launch Event at UNESCO Headquarters in Paris last February. The main IYPE activities take place during 2008 and operate within its SCIENCE and OUTREACH programmes. The other IYPE International Partners include AGU, EGU, EGS, GSA, NASA and SEG*.

Our first Statutes and By-Laws (published in the Journal of the International Association for Mathematical Geology, Vol. 1, No. 1, 1969) were adopted at the IAMG inaugural meeting during the 23rd IGC in Prague, August, 1968. They were based on the Statutes and By-Laws of AIPEA (Association Internationale pour l’Etude des Argiles) that had already been approved by the IUGS. A difference between the original IAMG and AIPEA constitutions was that we immediately added By-Laws about our newly established journal with Daniel Merriam as Founding Editor. AIPEA continues to hold International Clay Conferences approximately every four years, but never commenced its own journal. IAMG now produces three journals. For each journal we have a contract with the publisher: with Springer for Mathematical Geosciences and Natural Resources Research, and with Elsevier for Computers & Geosciences. During the past 4 years, we have signed new contracts for all three journals. A difference with the past is that the electronic versions of our journals have become more prominent than the traditional printed issues. None of our journals require authors to pay page charges. During the past few years, our three journals have obtained new Editors-in-Chief who now are supported by Associate Editors. AEs have more decision-making power and also more work than in the past. The members of our editorial boards and most of our reviewers are IAMG members. Scientific publishing is the principal reason for our existence. Of course, there are several other international associations including AAPG, AGU, EGU and GSA that publish three or more geoscientific journals. However, these other societies differ from IAMG in that they have tens of thousands of members, million-dollar budgets, and elaborate organizational infrastructures that we are doing without.

Over the past 25 years, IAMG membership has been fluctuating between 450 and 650. According to the end-of-March membership report prepared by the IAMG Office in Kingston, Ontario, we have 566 members “in good standing” meaning that they have paid their 2008 membership dues. It is a perpetual problem that a significant number of people who otherwise contribute much to the IAMG don’t bother to timely renew their US $10.00 annual membership. Four years ago, we introduced 4-year and life-time memberships but relatively few people have made use of these options; for example, at present we have only 138 life members.

Royalties on our journals vastly exceed membership dues as a source of IAMG income. For 2008, combined annual royalty checks received from our publishers amount to about $100,000 US. Since income consistently exceeded expenditures during most of our existence, a “nest egg” was created resulting in annual returns from investments. For example, from IAMG Treasurers’ reports on our website you can see that in December 1996, our surplus was $365,758 US; in December 2006, it had grown to $869,646 US. This means that, over a 10-year period, income exceeded expenses by about $50,000 US per year. During the past 10 years we have gradually been increasing annual expenditures. For example, various grants to mathematical geoscience students now total about $25,000 US annually versus $5,000 US four years ago. More money also is being spent on publicity, legal services, administration including new website, and travel by IAMG Executive and members. A conundrum is that as scientists we are only marginally interested in the legal and financial aspects of administering the increasingly large number of programs in which IAMG has become involved. For most of our members, the nitty-gritty of law and business administration are less rewarding than scientific research with publication and peer review. In spite of these difficulties, we remain a viable professionally-run organization and I wish to thank all of you who, on a voluntary basis, have contributed so much to the running of the IAMG.

Frits Agterberg

*AAPG - American Association of Petroleum Geologists
AGU - American Geophysical Union
EGU - European Geosciences Union
EGS - EuroGeoSurveys
GSA - Geological Society of America
NASA - National Aeronautics and Space Administration
SEG - Society of Exploration Geophysicists
Election Results

In online voting, set up successfully by Dragonfly, 173 members elected the new IAMG board and gave their opinion on the future name of the Association. The two names most favored are: IAMG: International Association for Mathematical Geology (no change) and IAMG: International Association for Mathematical Geosciences. In a subsequent run-off election the final choice was International Association for Mathematical Geosciences.

Subject to ratification at the IAMG General Assembly to be held on 8 August 2008 in Oslo, Norway, the composition of the new Council will be:

- **President**: Vera Pawlowsky-Glahn (Spain)
- **Vice President**: Qiuming Cheng (Canada/China)
- **Secretary-General**: Dan Tetzlaff (USA)
- **Treasurer**: Gina Ross (USA)
- **Councilors**:
 - George Bárdossy (Hungary)
 - Jef Caers (USA)
 - Angela Dibiasi (Argentina)
 - Eric Pirard (Belgium)
 - Christien Thiart (South Africa)
 - Richard Webster (UK)

IAMG Awards 2008

On behalf of the Awards Committee, I take great pleasure in congratulating this year’s recipients of the Krumbein Medal and the Griffiths Teaching Award.

The **Krumbein Medal**, the IAMG’s highest award, is won by Professor Qiuming Cheng. He is full professor jointly in the Department of Earth and Space Science and Engineering, and in the Department of Geography, at York University, Toronto. Additionally, he is Changjiang Scholar Professor and Director of the State Key Laboratory of Geological Processes and Mineral Resources (GPMR), which is part of the China University of Geosciences (CUG) with campuses in Wuhan and Beijing. Both in Toronto and Wuhan/Beijing he directs the research of large teams consisting of graduate students, postdoctoral fellows, and visiting scientists. In addition to serving on the IAMG Council, editorial boards and committees, he was mainly responsible for organizing two very successful annual meetings (IAMG-2005 in Toronto, and IAMG-2007 in Beijing). The second of these conferences with over 400 participants was our largest annual meeting ever. Largely due to Qiuming’s promotion of the IAMG, we now have many active members in China.

Professor **Vera Pawlowsky-Glahn** is this year’s winner of the **Griffiths Teaching Award**. Vera is already a recipient of the Krumbein Medal and is IAMG President-elect. She is Professor at the department of Informatics and Applied Mathematics at the University of Girona, Spain. Apart from her extensive publications especially in the field of compositional statistics, she has built up and runs what is one of the world’s leading centres of mathematical geoscience teaching and research. Apart from her very active research programme, she personally teaches a wide range of subjects at both undergraduate and postgraduate level at Girona (and previously at Berlin and Catalonia), and the quality of her teaching is demonstrated by the fact that many of her students have themselves gone on to receive high honours. Over the years, and more recently as IAMG Distinguished Lecturer, she has given short courses and seminars not only in Spain and Germany (Jena, Greifswald, Göttingen, Kiel) but also in Argentina, Italy, China and Hungary, and of course at many IAMG Conferences.

Stephen Henley
Chair, IAMG Awards Committee

Adrian Baddeley has been selected as our 2008 **Georges Matheron Lecturer** and will present a keynote lecture at the IGC in Oslo in August. He is Professor of Statistics at the University of Western Australia in the School of Mathematics and Statistics and has been Science Fellow at CSIRO Mathematical and Information Sciences since 2006-2008. Adrian took his B.A. Hons. (1st class) in Pure Mathematics and Statistics at the Australian National University, Canberra and in 1980 received his Ph.D. in Statistics from the University of Cambridge, UK. in the area of Stochastic geometry.

New IAMG Archivist and IAMG Historian

For many years various papers and documents relating to IAMG were accumulated at the Kansas Geological Survey where Dan Merriam and John Davis in various official functions took care of the Association. With the closing of the Mathematical Geology Section of the Survey, Dan Merriam suggested moving the more pertinent material to a new location. **Graeme Bonham-Carter** has agreed to be our new IAMG Archivist and has taken the archive consisting of some 27 boxes home with him where it will be stored in a special room in the basement of his new home in Merrickville, Ontario. Having the archive close by will make it more convenient for Graeme to catalogue and arrange for scanning of the many of the numerous documents. The IAMG Archive contains information related to the origin and early years of the IAMG.
It includes the material originally provided by Richard Reyment to Dan Merriam, our first and previous Archivist. Our original Constitution (Statutes and By-Laws) was adopted in Prague, August 22, 1968 and published in Mathematical Geology (Vol. 1, No. 1, pp 123-126). It was amended 10 times. Until 1998, revised Statutes and By-Laws were published in Mathematical Geology. The current Constitution can be found on our website.

Dan Merriam having been relieved of all the boxes now can concentrate on his real love: the history of mathematical geology and the IAMG. Evidence of this preoccupation can be found in this Newsletter (pp. 11-12), the column “Where are they now” and in several of the previous issues. He is, of course, in a perfect position for this job because early on he was actively involved in mathematical geology and in the precursor organization of IAMG, was a founding member in Prague 1968, and for many years was at the center of the development of IAMG and has personally known the many colleagues who have contributed to its success. All this experience and knowledge should serve him well as IAMG Historian in keeping us informed of our Association’s history.

Future IAMG Annual Meetings

Plans for the next four years of meetings after this year’s International Geological Congress in Oslo are taking shape. Stanford is set for next year, and the line-up is most likely the following:

- 2009 - Stanford, California
- 2010 - Budapest, Hungary
- 2011 - Salzburg, Austria (tentative)
- 2012 - Brisbane, Australia (IGC 34)

Proposals to hold IAMG-2010 in Budapest, Hungary have been accepted by the IAMG Board. The idea was first proposed by George Bardossy (just elected Councilor of IAMG) This would be our first Annual Meeting in a country east of the former iron curtain. (IAMG was founded at the 23rd IGC in Prague, Czech Republic in 1968; and our Silver Anniversary in 1993 was held in Prague as well). The meeting will be held at Eötvös Lóránd University in Budapest from August 29 to September 2, 2010. The main theme will be “The role of geostatistics in mineral exploration and in the solution of environmental problems”. Chief organizers are Janos Geiger, Associate Professor at the Department of Geology and Paleontology, University of Szeged, and Jozsef Kovacs, Eötvös Lóránd University.

After receiving the Budapest proposal, we learned that preparations in Salzburg, Austria, to submit a proposal to hold IAMG-2010 in Salzburg were at an advanced stage. During the past 10 years or so, IAMG has discouraged outright competition between potential sponsors of the IAMG annual meetings. Instead, it was attempted to reach a decision by consensus. This was preferred to avoid the large amount of work that would be performed in vain by the “losing” team. Also, several times it was difficult to find a sponsoring organization at all. Therefore president Agterberg asked Robert Marschallinger the chief organizer, if they would be willing to organize IAMG-2011 instead of IAMG-2010.

In response, the Austrian team decided to withdraw the 2010 bid and to plan for an IAMG meeting in Salzburg, 2011.

Pending a final proposal and Council approval we hope to see the 2011 meeting take place in Salzburg. As it stands now, the AGIT staff, which organizes one of the biggest European Geo-Informatics conferences (held annually in Salzburg, with 1100 attendees in 2007) has agreed to help in organizing the logistics. The core organization committee includes R. Marschallinger (Austrian Academy of Sciences GIScience research facility, Salzburg), J. Strobl (ZGIS centre of geoinformatics, Salzburg), V. Höck (Inst. Geography and Geology, Univ. Salzburg), and B. Zagel (AGIT organization committee).

For 2012 we can look forward to have the IAMG General Assembly in conjunction with 34th International Geological Congress in Brisbane. The Special ICG Councillor just elected to be our liaison in Brisbane is Simon Cox of CSIRO.

DONALD E. MYERS

2008 IAMG DISTINGUISHED LECTURER

Donald Myers is Emeritus Professor of Mathematics and Hydrology at the University of Arizona. Don is one of the “giants” within the IAMG and the broader communities of mathematical geology, spatial statistics, and environmetrics. He has devoted almost his entire career to the applications of mathematics and statistics in the earth and environmental sciences and has a distinguished record of scholarship in this arena. He has numerous publications in IAMG journals as well as many others in scientific journals of related interest to most IAMG members, and he is well-known within the IAMG community. Don is a good speaker, is enthusiastic about mathematical geology, and is well-traveled around the globe, having given at least 30 presentations outside the United States over the past 10 years.

Dr. Myers DL schedule is nearly fully booked with lectures this spring in the US and Mexico and planned lectures for this summer at several venues in Germany, Spain and Italy. There may be a few openings in the fall depending on the location and the intended dates. Don can meet informally for discussion with small groups; he is prepared to present the following one hour lectures. Each can be tailored somewhat to specific audiences. There will be a strong emphasis on the use of software and actual data in each of the lectures.

Please contact Sean McKenna, DL Committee Chair, at samcken@sandia.gov if you have an interest in scheduling a DL visit at your institution.

I. For a general audience with little prior knowledge of geostatistics

HISTORY OF GEOSTATISTICS - PAST, PRESENT AND FUTURE.

Geostatistics as we know it now is only about 45 years old although clearly it is based on earlier ideas. Initially, and even now to a considerable extent, it has developed outside of the statistical community, its development being heavily influenced by applications. While similar ideas were being put forward by Gandin in the USSR and Matern at about the same time, it was the work of G. Matheron and his students at the Centre de Géostatistiques that prompted the spread of geostatistics in mining, hydrology, and petroleum in the early years. Geostatistics might also be viewed as a special case of spatial statistics which also is a relatively recent development. Geostatistics and more generally spatial statistics have been greatly influenced by the development of fast, inexpensive computing. The development and availability of software for geostatistics has also been a critical factor.

II. CONNECTIONS - GEOSTATISTICS, RADIAL BASIS FUNCTIONS AND OBJECTIVE ANALYSIS

Objective Analysis was the name given to the work of Gandin and it was primarily known in the atmospheric sciences. It has largely been absorbed and merged with the results and ideas of geostatistics. In contrast, the work of Ř. Hardy in the early 1970s on interpolation of gravity data was and is best known in the numerical analysis literature. The equivalence between the RBF interpolating function and the kriging estimator as well as between the equations determining the coefficients requires only basic linear algebra. However, the thrust in terms of applications has remained quite different. Moreover, the emphasis is almost entirely on radial, i.e., isotropic basis functions in the Radial Basis Function literature. The direct derivations for Radial Basis Functions appear to depend on deterministic assumptions rather than statistical assumptions, but this is more a difference in interpretation.

III. NON-GEOMETRIC ANISOTROPIES AND SPACE-TIME MODELING

Continuity is a basic function property in analysis, but it is deterministic and generally is taken to be non-directional. The variogram and (auto) covariance function are statistical measures of the degree of continuity when it is not deterministic, and they might be directionally dependent. The practical problem is constructing valid variograms or covariance functions incorporating directional dependence in the right way. Models where only the range of dependence is directionally dependent can be obtained by a stretching and a rotation on the underlying space. More complicated models are necessary if the sill or other parameters change with direction. Space-time models are a special case of this latter problem.
and various authors have used different constructions. The work of Cressie- Huang, De Cesare-Myers-De Iaco and Posa, Ma, Fuentes, Gneiting, Stein and others will be reviewed.

IV. MULTIVARIATE SPATIAL STATISTICS

Some authors have used the term “multivariate statistics” to mean spatial problems in higher dimensional space. But more commonly it means that there are several variables of interest in which case the key question is whether there is some form of dependence between the variables. The dependence may be deterministic, e.g., the differential equation linking head and hydraulic conductivity, or it may be statistical. The difference between variables may be one of the scale of observation, e.g., ground based observation vs satellite mounted sensor observations, or core assays vs “block” assays. Sometimes the relationship is assumed to be one of “cause and effect” but does not give rise to an analytic expression. Linear models (including Linear Mixed models and Generalized Linear Mixed Models) is one method for obtaining empirical relationships. Cokriging in its various forms is a generalization of kriging from the univariate form. Various problems arise in applying each of these techniques and they overlap to some extent. Cokriging is often used to utilize the redundancy in multivariate data to compensate for a lack of data for some variables by using spatial cross-correlations between pairs of variables as well as the spatial correlations for each variable separately. There are both practical and theoretical problems with applying these techniques. Their development has been strongly driven by applications.

IYPE @ ICG33

The International Year of Planet Earth (IYPE) is an initiative of the International Union of Geological Sciences (IUGS) and the United Nations Educational, Scientific, and Cultural Organization (UNESCO). It consists of two major programs: a Science Program—focused on complex interactions within the earth system and its long-term sustainability; and an Outreach program including educational ventures at all levels to convince politicians, other decision-makers and the public at large of the invaluable contributions made by geoscientists to society. The official Year is 2008 but activities have already started in 2007 and will continue during 2009. The IYPE program, including lists of projects, activities and participants can be found on http://www.yearofplanetearth.org. IYPE will play a dominant rôle at the 33rd International Geological Congress in Oslo with presentations during plenary sessions every day. Similarly, IYPE will be featured prominently at other major conventions such as the Geological Society of America Annual Meeting and the 31st International Geographical Congress in Tunis.

Implementation of the Year’s ambitions will be on international and national levels. To that end, National Committees of the Year of Planet Earth have been launched, or are in the process of being launched. By April 2008 National Committees were operational in 68 countries. In addition, the IYPE Board granted permission to develop Regional IYPE Committees for specific regions where these would be more feasible to establish than National Committees. One Regional IYPE Committee was established in East and Southeast Asia, covering 11 nations.

IAMP has formally accepted the invitation to become the 15th International Partner of IYPE. Non-commercial International Partners contribute at least US$ 10,000 per year over 2008 and 2009. Existing partners include GSA, AGU, EGU, SEG, NASA, Springer-Verlag and several national geological surveys. Being an IYPE International Partner will greatly increase our visibility to the world.

During the Global Launch Event of IYPE in February in Paris, Frits Agterberg and Gina Ross, representing IAMG, met with Eduardo de Mulder, IYPE Executive Director, to discuss in which ways International Partnership will increase our visibility. IAMG is now listed both in the status report brochure and on the IYPE website.
Student Affairs

Student Grants awarded
IAMG’s student affairs committee has selected the following students from 13 applicants to receive a grant of US$ 2,000 for scientific work in mathematical geosciences:
 Terra Anderson,
 Daniel Buscombe,
 Doug Edmonds,
 David F. Machuca-Mory,
 Daniel Silva,
 Ahamefula Udume
 Helmut Schaeben
Chair IAMG Student Affairs Committee

New IAMG Student Chapter
A new IAMG Student Chapter was formed at Sun Yat-Sen University in Guangzhou City and has been officially accepted by IAMG. It is the second IAMG student chapter established in China. (To us older folks Guangzhou was known as Canton! - ed.)

Conference Reports

The Journal of China University of Geosciences and the aftermath of the IAMG-2007 China
One of the objectives of the IAMG is to achieve global propagation and participation of mathematical geosciences. The conference in China was an opportunity to get closer to those objectives. This was an important IAMG conference because it was held at a time when a booming Chinese economy calls for technological actions for a sustainable development. Of course, the aim of the conference was not only a global gathering of geoscientist. This is reflected in the aftermath of the IAMG-2007 China meeting. Part of the legacy of the meeting in China is obvious by the publication effects. Abstracts and extended abstracts were published in a volume of Proceedings made available during the conference. Some selected papers were further recommended to various peer-reviewed Journals. This includes the JOURNAL OF CHINA UNIVERSITY OF GEOSCIENCES (JCUG). JCUG is a peer-reviewed English journal publishing broad modern geoscientific ideas.

The IAMG wanted to leave a legacy beyond the usual proceedings which only publish short abstracts or extended abstracts. JCUG has already published various papers in its first issue of 2008 (Volume 19, Issue 1, Pages 1-96, February 2008) and will publish more papers which are constructed based on presentations delivered at the China IAMG-2007.

Some papers are listed as follows:
 Cooper GRJ, 2008, Euler Deconvolution with Improved Accuracy and Multiple Different Structural Indices. 72-76
 Han Yan, Yang Yiheng. 2008, Monotone Regression and Correction for Order Relation Deviations in Indicator Kriging, 93-96

These papers are available in http://www.sciencedirect.com/science/journal/10020705 and they contain groundbreaking ideas for a truly international audience.

Q. M. Cheng
Conference Secretary-General of IAMG2007 and Board member (JCUG)

Skew Symmetric Probability Distributions in Bertinoro, Italy.
April 6-10, 2008 a small workshop on the so-called “Skew Symmetric Probability Distributions”, the area related to the “skew-normal” and similar distributions, was held in Bertinoro, Italy. The workshop was organised by an Italian research group, lead by Adelchi Azzalini and Antonella Capitanio. It gathered about 30 people from all around the world to discuss “skew distributions”. There were 29 presentations focused on theoretical and practical aspects, some of them on the Bayesian theory, and an open discussion that concluded the workshop. From my point of view, the most interesting contributions to the workshop were those dealing with the inferential aspects in the skew models (univariate and multivariate versions of skew-normal, skew-t or extended skew-normal) and its applications. I presented a contribution on the multivariate skew-normal distribution on the simplex, which is suitable for modelling compositional data which present some skewness in their representation in coordinates.

The place where the workshop was held deserves special mention, as the University Residential Centre of Bertinoro is an ancient seminary build on the top of a hill overlooking the city of Bertinoro. Meetings took place in the Sala Affrescata, inside the Episcopal Fortress and decorated with important frescoes. The fascinating location can be viewed in www.centrocongressibertinoro.it.

Gloria Mateu-Figueras
Member of the research group on compositional data
University of Girona, Spain
Member News

Vera Pawlowsky-Glahn guest of the Royal Swedish Academy of Sciences

In October 2007, Vera and husband Juan-José Egozcue visited Stockholm under the aegis of the Swedish Academy of Sciences, the visit being defrayed by a grant from the Fund to the Memory of Jacob and Marcus Wallenberg. This fund provides the means for inviting distinguished foreign scientists to lecture on their research. A post-graduate course for research students in the geosciences was held at the University of Stockholm, followed by a lecture for a more general public. Juan-José was invited to Uppsala where he lectured to physicists on the geometry of Hilbert Space as relevant for compositional data analysis.

The visit was voted a great success by the students participating in the course. Vera was impressed with the standard of knowledge displayed by the post-graduates and their ability to appreciate the subtleties underlying the hypotheses relating to statistical data-analysis.

The successful outcome of the visit was to a very large extent due to the energetic participation of Professor Barbara Wohlfarth of the School of Post-graduates and their ability to appreciate the subtleties underlying the hypotheses relating to statistical data-analysis.

submitted by Richard A. Reyment

Where Are They Now?

Frits Agterberg and Dan Merriam

by Dan Merriam, IAMG historian

As part of the preparation for the 40th anniversary of our Association in 2008, Dan Merriam had suggested this column to track the whereabouts and developments of members once in the limelight. This is his third contribution. Anyone who has knowledge of what our elder colleagues have been doing is invited to send a short summary to the Editor or Dan.

It may difficult for the younger generation to realize the conditions under which the Association was founded 40 years ago (Merriam, 1978). The world was divided into East and West and contacts across this division were difficult at best and the threat of nuclear war was always with us.

The International Geological Congress, hosted in the East in Prague, allowed attendees from around the world to meet and exchange ideas. The invasion of Russian troops, however, during the Congress was a complete surprise to all concerned, including the attending Russian geologists. Although the occupation completely disrupted the Congress, the IAMG organizational meeting took place under the guns; a brief description of the event was given from my perspective (Merriam, 2007a).

Eight of the founding members of IAMG in Prague in 1968 have been chronicled in previous newsletters and include John Harbaugh (USA), Danie Krige (South Africa), Vic Loudon (UK), Richard McCammon (USA), Václav Němec (Czechoslovakia), Richard Reynment (Sweden), Hannes Thiergärtner (then East Germany), and Tim Whitten (USA) (Merriam, 2007b, 2007c). All of the living attendees are retired, but most remain active.

Of the twenty that attended that ill-fated meeting in August of 1968, five are known to be deceased including Colin Dixon (UK), Dimitri Rodionov (USSR), Andrei Vistelius (USSR), Geoff Watson (USA), and Peter Wilkinson (UK). The whereabouts of five others including F. Benkö (Hungary), D.J. Burdon (the United Nations representative), R. Hesse (West Germany), R. Ivanov (Bulgaria), and V. Kutolin (USSR) are unknown. That leaves two who are chronicled here. Both Frits Agterberg and Dan Merriam have been president of the IAMG and both have received the William Christian Krumbein Medal, the highest honor IAMG can bestow.

Frederik Pieter Agterberg (Canada), although retired from the Geological Survey of Canada, is still active, currently serving as IAMG president. He was born in The Netherlands and studied geology and geophysics at University obtaining his PhD in 1961. After a one-year Wisconsin Alumni Research Foundation post-doctorate fellowship at the University of Wisconsin, he joined the Geological Survey of Canada in 1962. Initially he was a petrological statistician working on the Canadian contribution to the International Upper Mantle Project. Later, he formed and headed the Geomathematics

submitted by Richard A. Reyment

Where Are They Now?

Frits Agterberg and Dan Merriam

by Dan Merriam, IAMG historian

As part of the preparation for the 40th anniversary of our Association in 2008, Dan Merriam had suggested this column to track the whereabouts and developments of members once in the limelight. This is his third contribution. Anyone who has knowledge of what our elder colleagues have been doing is invited to send a short summary to the Editor or Dan.

It may difficult for the younger generation to realize the conditions under which the Association was founded 40 years ago (Merriam, 1978). The world was divided into East and West and contacts across this division were difficult at best and the threat of nuclear war was always with us.

The International Geological Congress, hosted in the East in Prague, allowed attendees from around the world to meet and exchange ideas. The invasion of Russian troops, however, during the Congress was a complete surprise to all concerned, including the attending Russian geologists. Although the occupation completely disrupted the Congress, the IAMG organizational meeting took place under the guns; a brief description of the event was given from my perspective (Merriam, 2007a).

Eight of the founding members of IAMG in Prague in 1968 have been chronicled in previous newsletters and include John Harbaugh (USA), Danie Krige (South Africa), Vic Loudon (UK), Richard McCammon (USA), Václav Němec (Czechoslovakia), Richard Reynment (Sweden), Hannes Thiergärtner (then East Germany), and Tim Whitten (USA) (Merriam, 2007b, 2007c). All of the living attendees are retired, but most remain active.

Of the twenty that attended that ill-fated meeting in August of 1968, five are known to be deceased including Colin Dixon (UK), Dimitri Rodionov (USSR), Andrei Vistelius (USSR), Geoff Watson (USA), and Peter Wilkinson (UK). The whereabouts of five others including F. Benkö (Hungary), D.J. Burdon (the United Nations representative), R. Hesse (West Germany), R. Ivanov (Bulgaria), and V. Kutolin (USSR) are unknown. That leaves two who are chronicled here. Both Frits Agterberg and Dan Merriam have been president of the IAMG and both have received the William Christian Krumbein Medal, the highest honor IAMG can bestow.

Frederik Pieter Agterberg (Canada), although retired from the Geological Survey of Canada, is still active, currently serving as IAMG president. He was born in The Netherlands and studied geology and geophysics at University obtaining his PhD in 1961. After a one-year Wisconsin Alumni Research Foundation post-doctorate fellowship at the University of Wisconsin, he joined the Geological Survey of Canada in 1962. Initially he was a petrological statistician working on the Canadian contribution to the International Upper Mantle Project. Later, he formed and headed the Geomathematics

submitted by Richard A. Reyment
contributions to quantitative stratigraphy. In 2003 he was appointed and continuously on the Council for 40 years until this year when he remains active. He has been involved with the IAMG since its founding from the Kansas Geological Survey and Wichita State University, but Daniel F. Merriam (USA), likewise is retired, with emeritus status.

His research interests from 1958 to the present span a wide range of subjects, but most have an underlying statistical or mathematical base. His research interests also are in the history of geology, he has been appointed the historian for IAMG as well as for the Department of Geology at the University of Kansas.

He has published extensively on cratonic basins and their geothermal overprint, development of ‘plains-type folds,’ which are local oil and gas producing anticlines, and genetic stratigraphy (cyclic sedimentation) with emphasis on the Midcontinent (USA) and Kansas in particular. Because his current interests also are in the history of geology, he has been appointed the historian for IAMG as well as for the Department of Geology at the University of Kansas.

References
Merriam, D.F., 2007b Where are they now?: IAMG Newsletter No. 74, p. 7.
Merriam, D.F., 2007c, Where are they now?: IAMG Newsletter No. 75, p. 11-12.

Obituaries
Proposal for a Series of IAMG Overviews

John W. Harbaugh

The overall objective would be to provide frequently updated overviews that deal with the current status of specific fields of mathematical applications in the geosciences. Ideally the overviews would be updated once a year, and more often depending on the rate of development in the field. The goal would be to provide a timely and conveniently accessible source so that anyone could readily find out about the status of ongoing research in a specific field of application. In other words, the prospective user of the system could quickly find out who is doing what, what the status of specific projects are with respect to existing publications and pending publications, and if publication is not imminent, are interim reports prospectively available via other means, including commercial descriptions.

Before we proceed, let’s examine how knowledge about these fields of application is currently disseminated. Some, of course is via formal publication in journals of the IAMG and other professional societies. Some is via oral and poster presentations and commercial exhibits at meetings of the IAMG and other geological conclaves. Some is via advertising by vendors. Informal “word-of-mouth” transmission probably accounts for a lot of dissemination, not only at meetings but also by personal contacts among friends and acquaintances. Knowledge does get disbursted. There is a network out there, and we know that it is important, but its effectiveness is hard to measure.

Many different topics could be defined that are appropriate for mathematical geology, so one of the challenges is how to select them, how to classify them, and how to bound them. Virtually all intergrade and can be thought of as part of a continuum (or continua). Depending on the classification, offhand there might be at least 50 to 100 readily defined topics, and maybe more.

If this proposal has strong merit, I suggest that a committee will be needed to prepare a preliminary plan for it, assuming that the committee concurs that a series of overviews is desirable and worth the effort. An earlier step will be to draw up the charge to the committee.

Below, I’ve outlined issues that probably would be involved in an overview focused on sedimentary basin modeling. It is a “trial balloon” that I have drawn up based largely on my former involvement in sedimentary basin modeling. My idea as I wrote this was that it would help me think about what would likely be involved in such an overview. I now realize that sedimentary basin modeling would likely involve a very large overview, so one of the considerations will be to decide how to how to define it and bound it so it is kept within manageable size.

I must state, however, that I am now long out of active involvement in basin modeling, having retired from academia nine years ago and since then have turned my professional interests to oil and gas production and management of mineral lands in Oklahoma and the Texas Panhandle. Times change. If in the meantime, I would appreciate your responses.

SEDIMENTARY BASIN MODELING: A “TRIAL BALLOON”

In analyzing what an overview might involve, suppose someone wants to know the present status of the field of sedimentary basin modeling. Of course there is a lot going on, but someone unacquainted with the field would have a hard time finding out much about it and making effective comparisons between the different versions that are currently available. The published literature consisting of a handful of books and numerous articles in established journals would help, but would probably fall short of providing an effective up-to-date overview of what’s going on world-wide.

While there are still academics in the field, various oil-industry service companies now provide most of the relatively advanced computing procedures for basin modeling. We know about these commercial sources from commercial exhibits at meetings, as well as presentations by academic researchers in the field who interface with the companies. While basin modeling began as an academic cottage industry, it now involves high-powered software available for rent or purchase. For example, could advice be provided to an academic who wants to try an existing basin modeling scheme? Or, could objective comparisons be provided for independent oil and gas producers who don’t have research staffs but would like to find out what’s commercially suitable?

In turn, these questions raise the question whether it is suitable for IAMG to provide overviews of commercial basin models? In defense of the IAMG’s potential sponsorship role, sedimentary basin modeling is intensely geological as well as intensely mathematical and computational. Given that, it seems to me that a basin modeling overview is suitable for inclusion in a spectrum of overviews, but there are aspects that we need to consider at the outset, and all of them involve issues of classification, as follows:

Dimensionality: Two-dimensional versus two-and-a-half-dimensional versus three-dimensional models. Most of the earlier academic models are 2-D, although several were 2.5-D. Now, the most advanced are partly 3-D. True three-dimensionality is almost an elusive goal that may not be reached for a while. In fact, it may be more useful to think of dimensionality as a continuum ranging from 2-D to 3-D, and to devise classification schemes that reflect the degrees of dimensionality.

Dynamic versus static: Today’s sedimentary basin models are dynamic. The main idea is to see what happens when specific controls are imposed on the model and it responds dynamically. However, there are limits. Translation of motions vertically in a sequence of simulated deposits is readily accomplished, but lateral deformation after deposition is difficult to represent, particularly if “conservation of volume” is to be observed.

Geometric-form models versus geologic-process models. Most 2-D ,2.5-D and 3-D models are geometric-form models, but some may contain partial and greatly simplified process-related aspects, such as sediment transport represented by large-scale movement. Others are much more dedicated to representation of geologic processes themselves, such as transport of clastic sediment as functions of grain size and flow velocities.

Interdependence of components: While we readily grant that geological processes in the real world are truly interdependent, there are large problems in incorporating true interdependence between components of a simulation model, no matter how simplified the model may be. For one, interdependence inevitably results in chaotic and cyclic behavior, which in one sense is desirable because it is an aspect of the real world’s behavior.

Lateral and vertical compartmentation: Given the present state of the art, it seems that compartmentation of space (and time) is necessary. We have to devise compartments because we can’t readily represent geological features as continuous features. In turn, we have to represent all this geological information in numerical form, in arrays. Laterally, it is convenient to represent the two areal dimensions in arrays indexed by rows and columns that define fixed geographic cells. Of course the number of cells gets large if detail is to be represented over a substantial area. For example, a 1000 x 1000 lateral array might be the minimum for representation of an area in a simulation, but at this rate, each vertical division, however defined, has a million elements. If there are 1000 vertical divisions, there are a billion cells. Sooner or later, the computational demands get large. There is a further complication in that vertical cellular dimensions may vary from cell to cell. And so far, we haven’t touched on the issue of lateral translation of cells in the sediment volume.

Other considerations: I will back off at this point, but I should add that there are a number of other technical considerations that include representation of time, scales for time and space, graphic display, computational challenges, stability issues, devising input parameters, validation, assessing the usefulness of predictions in space, and means for analyzing the uncertainty. This foray into sedimentary basin modeling readily reveals that there are many aspects that need to be considered in an overview.

Scope of the overview is critical. The boundaries of topics included in an overview are likely to require arbitrary definitions because they are part of a continuum. This is hardly surprising, but defining the boundaries is important. For example, sedimentary basin modeling intergrades with geophysics (seismic and well-log responses), and more broadly relates to many aspects of sedimentary geology, structural geology, and tectonics. While some of these fields may not be customarily considered to be part of mathematical geology, they are continua that intersect mathematical geology and vice versa.

Classification is critical because we have to define the field of an overview, and in turn classify what lies within it. Very likely we will need a multidimensional matrix. Consider basin modeling, which can be thought of as involving a continuum that include dimensionality, the degree to which geologic processes versus geometric forms are represented, the degree to which rock properties such as lithology, seismic velocities, gamma-ray responses, porosity and permeability, and fluid content are represented, and the degree of interdependence between processes and properties of the model. Then there are computational issues that are also part of a continuum, including time steps, discretization, vertical scales vs horizontal scales, stability, and so forth.
I would like to comment on the new contract for Mathematical Geosciences as well as on developments since my reporting last August.

1. In my opinion, the new contract with Springer is outstanding and an example for our other journals. In summary:

- all the negative parts identified in the previous contract no longer exist;
- Springer is explicitly responsible for quality and there is a clear exit strategy, if we feel the need to do so;
- in addition to the responsibility, Springer provides now copy editing level 2 (implemented since May 07);
- the new contract includes all our requests, e.g., copies for students etc.;
- the funding to the journal is nearly doubled (20,000$US/year from 11,000$US/year before) with provisions to further support travelling for the editor as may be needed (e.g., my recent visit to Heidelberg was funded by Springer);

In all, this is a good contract. More important than the contract is the working relationship we have and develop with the publisher. Our new partner (the Springer group in Heidelberg is in practical terms a new one) is what I would describe as a highly professional, hard working, honest and most supportive group. My collaboration with them since the Spring of this year has been outstanding, most productive and, in its peculiar way, fun. I very strongly support this outcome and approve the contract (with many thanks to Graeme Bonham-Carter for his work).

2. Summary on Mathematical Geosciences since the last one in August:

- the January issue, 40(1), is the first one with the new name;
- despite the move of production and typesetting and printing to different countries/organizations, the journal is back on track on production schedules, while the glitches from the fairly large scale reorganization we undertook this year have been minimal and, if any, certainly much less than I ever expected;
- MG has now a new cover, the typesetting follows a variation of Springer’s standardization, and acid free paper is used;
- as of January, we welcomed on the Editorial Board Dr. Friedrich Wellmer (Germany) and Dr. Guillaume Caumon (France), in an ongoing effort to renew, expand, increase activity and further improve;
- MG will have a new Book Review Editor, Dr. Denis Marcotte (Canada) who will be replacing Dr. Tim Coburn (USA); Tim is unable to continue due to increased administrative responsibilities at his University; we thank Tim for his efforts and contribution;
- regarding book reviews, we look forward to more book reviews, hoping that our issues from about mid 2008 and on will all include a book review;
- submissions to MG are to date about 30% higher than 2007, and I hope that this trend will continue; in my opinion, the improvement in submissions has not yet been followed by improvement in quality; improvement in quality remains my primary long term goal for the journal; rejection rate stands now at about 45%;
- as of November, the production process is electronic, from my final editing and acceptance to typesetting (all through Editorial Manager); this facilitates flow, efficiency in handling manuscripts, is less work than the manual workflow we used before, and minimizes possibilities for errors;
- substantial work remains in organizing other aspects of the Editorial Manager (for example, we need a new reviewers database and classification);
- my September visit to Heidelberg was productive and I understand more directly how things work and the persons involved; I can further support my impressions up to that time of a highly professional team that takes pride in their work.

Roussos Dimitrakopoulos
Editor-in-Chief

Natural Resources Research
Since late last year, when I took over from Dan Merriam as editor, there have been a number of changes to NRR. The biggest change is that, with the agreement of the editorial board, I have broadened the scope of the journal. The difference can be seen by comparing the former and current descriptions of the journal’s focus. Prior coverage focused on “the quantitative exploration, assessment, and exploitation of mineral resources interpreted in the broadest sense”. This has been expanded to “quantitative geoscientific studies reporting on the search for and development of natural resources, including their associated environmental, economical, and risk-related aspects”. Consequently, readers will see articles concerning grain dust, rain, and heat flow, alongside the more mineral-related studies on coal gasification, reserves models, and gold prospecting.

There are several reasons for the change in scope. First, I believe the new scope better agrees with the journal title. Prospective authors and readers have a clearer view of what to expect. Second, a review of articles published in NRR over the past few years suggests that some contributions were well outside the mineral-oriented focus. Thus, the change brings these contributions into harmony with the journal theme. Third, the expansion produces a platform where resource modeling, assessment, management, and policy can be discussed.

Thanks to the change to electronic submission and with the help of a broad range of reviewers, I have been striving to provide reviews and a decision within three months of submission. If the author promptly responds to the decision, electronic publication is possible within six months of first submission. I believe the long-term health of NRR rests with authors receiving fair and prompt reviews and I ask successful authors to recommend the journal to their colleagues. I ask the same of my IAMG colleagues.

Jerry L. Jensen
Editor-in-Chief

Mathematical Geosciences Editor’s 2007 Best Reviewer Awards
It is a pleasure to introduce the first two recipients of this new award. Established in 2007, the “Editor’s best reviewer award” is given yearly in recognition of outstanding efforts and contributions of the journal’s reviewers. These colleagues graciously offer their expertise and professional service, and are key contributors to the quality of the journal.

The 2007 award recognizes two among our many invaluable reviewers, our colleagues Christina Magill, Macquarie University, Australia and J. Antonio Vargas-Guzman, Saudi Aramco, Saudi Arabia. Christina receives her award for her diligent, thorough reviews that surpass expectations, and her commitment and efforts in seeing full completion of new and revised versions of manuscripts. In addition, she has done significant technical and linguistic editing for authors who cannot afford English language editorial services, to produce manuscripts with otherwise outstanding scientific content. Antonio has, for yet another year, offered his commitment to detailed reviews for an unusually high number of manuscripts, handled challenging manuscripts, and assisted authors in improving their work and papers.

In addition to meticulous technical reviews and expert critique, a key element of a good review is the invaluable substantial assistance to authors in improving their manuscripts through detailed suggestions and guidance for improvements. Both Christina and Antonio are bright examples of outstanding reviewers and fully deserve our recognition.

Roussos Dimitrakopoulos
Editor-in-Chief
Mathematical Geosciences

- 11 -
Natural Resources Research

Volume 16, Number 4, December, 2007
Geostatistical Simulation of Acoustic Log Data for Seismic Depth Conversion — Vanessa Cerqueira Koppe, João Felipe Combra Leite Costa, Jair Carlos Koppe, Fernando Gambín, Gary Fallon and Nick Davies
Utility Efficient Frontier: An Application in the Oil and Gas Industry — Mansoor Hamood Al-Harthy
Multiple-Point Statistics for Training Image Selection — Jeff B. Bossvert, Michael J. Pyrcz and Clayton V. Deutsch

Volume 17, Number 1, March, 2008
Peak Oil: Testing Hubbert’s Curve via Theoretical Modeling — S. H. Mohr and G. M. Evans
Grain Dust as an Energy and Food Resource — Majdi Al-Mahasen, Mohamad Al-Widyani, Hussein Abuabneh, Taha Rababah and Khalif Ereifej
Estimation of Coal Reserves for UCG in the Upper Silesian Coal Basin, Poland — Barbara Białek
Radial Basis Functional Link Nets Used as a Prospecting Mapping Tool for Organic Geologic Deposits Within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield — Vesa Nykänen

Mathematical Geosciences

Volume 40, Number 1, January, 2008
Mathematical Geosciences—Forty and Still Modeling! — Roussos Dimitrakopoulos
Kernel Principal Component Analysis for Efficient, Differentiable Parameterization of Multipoint Geostatistics — Pallav Sarma, Louis J. Durlofsky and Khalid Aziz
Mineral Deposit Densities for Estimating Mineral Resources — Donald A. Singer
Basin Modeling in the Kuqa Depression of the Tarim Basin (Western China): A Fully Temperature-dependent Model of Overpressure History — Guangren Shi
Multi-Scale Texture Modeling — Ralf Hiebelscher and Helmut Schueben
Substitution Random Fields with Gaussian and Gamma Distributions: Theory and Application to a Pollution Data Set — Xavier Emery
Kriging and Semivariogram Deconvolution in the Presence of Irregular Geographical Units — Pierre Goovaerts
Best Paper Award 2006

Volume 40, Number 2, February, 2008
Multiple-Point Simulations Constrained by Continuous Auxiliary Data — Tatiana L. Chugunova and Lin Y. Hu
Time-dependent Inversion of Surface Subsidence due to Dynamic Reservoir Compaction — A. G. Muntendam-Bos, I. C. Kroon and P. A. Fokker
Inversely-Mapped Analytical Solutions for Flow Patterns around and within Inclined Elliptic Inclusions in Fluid-Saturated Rocks — Chongbin Zhao, Bruce E. Hobbs, Alison Ord, Shenglin Peng and Liangming Liiu

MG Volume 40, Number 3, April, 2008
Outlier Detection for Compositional Data Using Robust Methods — Peter Filzmoser and Karel Hron
Kinematics-Based Mathematical Model for Deforming Thrust Wedges — Matty Mookerjee and Gautam Mitra
Stability Analysis and Numerical Simulation of Differential Frost Heave — Rorik A. Peterson
Inversion Reconstruction of Gravity Potential Based on Gravity Gradients — M. Dobróka and L. Völgyesi
Properties of a Diffusive Hydrograph and the Interpretation of Its Single Parameter — R. E. Criss and W. E. Winston
Indicator Kriging without Order Relation Violations — Raimon Tolosana-Delgado, Vera Pawlowsky-Glahn and Juan-Jose Egozcue

Computers & Geosciences

Volume 34, Issue 1 (January 2008)
Volume and surface-area measurements using tomography, with an example from the Brenham pallasiite meteorite — Jacob Spinsby, Heimer Friedrich, Peter R. Busby
AGRI: Adaptive grid refinement in Fortran — Laurent Debreu, Christophe Voulant, Eric Blayo
Elasto-plastic constitutive model for geotechnical materials with strain-softening behaviour — Ruiping Guo, Guangxin Li
Column and batch reactive transport experiment parameter estimation using a genetic algorithm — Anh H. Massoudieh, Ann Mathew, Timothy R. Ginn
Visualization-informed noise elimination and its application in processing high-spatial-resolution remote sensing imagery — Yu Qian, Fang Qiu, Jie Chang, Kang Zhang

VISM: Sequential simulation for linear inverse problems — Thomas Mejer Hansen, Klaus Mosegaard
Identification of stratigraphic formation interfaces using wavelet and Fourier transforms — Shih-Yu Pan, Bieng-Zih Hsieh, Ming-Tar Lu, Zsay-Shing Lin

C&G Volume 34, Issue 2 (February 2008)
Comparing time series using wavelet-based semblink analysis — G.R.J. Cooper, D.R. Cowan
ChirCor: A new tool for generating synthetic chirp-seismic programs — Giulio Dal Forno, Luca Gasperini
Automatic detection and analysis of discontinuity geometry of rock mass from digital images — D. Deb, S. Hariraran, U.M. Rao, Chang-Ha Ryu
Support vector machine for 3D modelling from sparse geological information of various origins — Alexander Smirnoff, Eric Bossvert, Serge J. Paradis
Spatially explicit individual-based modeling using a fixed super-individual density — Firdi L. Hellweger
VOLTINT: A Matlab®-based program for semi-automated processing of geochemical data acquired by voltammetry — Gwéndolyn Bristow, Martial Taillefert
Modelling surface radioactive, chemical and oil spills in the Strait of Gibraltar — R. Periáñez, A. Fascul-Granged

C&G Volume 34, Issue 3 (March 2008)
Using an artificial neural network to improve the transformation of coordinates between classical geodetic reference frames — A. Tierra, R. Dala-zaona, S. De Freitas
Direct minimum/maximum autocorrelation factors within the framework of a two structure linear model of coregionalisation — Ellen M. Bandarian, Lynette M. Bloom, Ute A. Mueller
A new front-tracking method to model anisotropic gravity and magnetic boundary motion in rocks — J.K. Becker, P.D. Bons, M.W. Jessell
MTCLAB: A MATLAB®-based program for traveltome quality analysis and pre-inversion velocity tuning in 2D transmission tomography — J.L. Fernández-Martínez, J.P. Fernández-Alvarez, L.M. Pedreau-González
An Expert System for measuring shear-wave splitting above small earthquakes — Ping Hao, Yuan Gao, Stuart Crampin
A frequency domain inversion code to retrieve time-dependent parameters of very long period volcanic sources — S. Cesca, T. Dahn
An educational interactive numerical model of the Chesapeake Bay — Jessica R. Crouch, Yuzhong Shen, Jay A. Austin, Michael S. Dinniman
Algorithm based on simulated annealing for land-use allocation — Inés Santé-Riveira, Marcos Boullón-Magán, Rafael Crecente-Maseda, David Miranda-Barros
FISCHERPLOTS: An Excel spreadsheet for computing Fischer plots of accommodation change in cyclic carbonate successions in both the time and depth domains — Anton Husinec, Danko Basch, Brett Rose, J. Fred Reid
3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines — Oliver Kaufmann, Thierry Martin
Merging of georadiometric grids using histogram matching — D.R. Cowan, G.R.J. Cooper

C&G Volume 34, Issue 4 (April 2008)

Building model analysis applications with the Joint Universal Parameter Identifierification and Evaluation of Reliability (JUPITER) API — Edward R. Banta, Mary C. Hill, Eileen Poeter, John E. Doherty, Justin Babendreier

“compositions”: A unified R package to analyze compositional data — K. Gerald van den Boogaart, R. Tolosana-Delgado

A coefficient of restitution of rock materials — B. Imre, S. Råbsamen, S.M. Springman

3D fold and fault reconstruction with an uncertainty model: An example from an Alpine tunnel case study — Andrea Bistacchi, Matteo Massironi, Giorgio V. Dal Piaz, Giovanni Dal Piaz, Bruno Monopoli, Alessio Schiavo, Giovanni Toffolon

A greedy randomized adaptive search procedure for the point-feature cartographic label placement — Gildásio Leechi Cravo, Glayloadst Mattos Ribeiro, Luiz Antonio Nogueira Lorenza

Automating geospatial metadata generation — An integrated data management and documentation approach — James K. Betcheller

Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS — Soheil Borouchaki, Jacek Malczewski

Generating and updating multiplicatively weighted Voronoi diagrams for point, line and polygon features in GIS — Pinfiang Dong

Association Announcement 2005 Felix Chayes Prize

C&G Volume 34, Issue 5 (May 2008)

Two equations of state assembled for basic of multiphase CO2 flow and in deep sedimentary basin conditions — Brian J.O.L. McPherson, Weon Shik Han, Barret S. Cole

A method to detect and correct single-band missing pixels in Landsat TM and ETM+ data — Tobias Kuemmerle, Alexander Damm, Patrick Hostert

A new multi-platform modular software tool for wide-angle reflection/refraction arrays — A. Pignatelli, A. Giuntini, R. Console

GRDM — A digital field-mapping tool for management and analysis of field geological data — Samarpan Dey, Parthasarathi Ghosh

Generation of k-th order random toposequences — Nathan P. Ogders, Alex. B. McCartney, Budiman Minasny

A methodology to construct training images for vein-type deposits — J.B. Boisvert, O. Leuangthong, J.M. Ortiz, C.V. Deutsch

A methodology to construct training images for vein-type deposits — J.B. Boisvert, O. Leuangthong, J.M. Ortiz, C.V. Deutsch

A coefficient of restitution of rock materials — B. Imre, S. Råbsamen, S.M. Springman

3D fold and fault reconstruction with an uncertainty model: An example from an Alpine tunnel case study — Andrea Bistacchi, Matteo Massironi, Giorgio V. Dal Piaz, Giovanni Dal Piaz, Bruno Monopoli, Alessio Schiavo, Giovanni Toffolon

A greedy randomized adaptive search procedure for the point-feature cartographic label placement — Gildásio Leechi Cravo, Glayloadst Mattos Ribeiro, Luiz Antonio Nogueira Lorenza

Automating geospatial metadata generation — An integrated data management and documentation approach — James K. Betcheller

Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS — Soheil Borouchaki, Jacek Malczewski

Generating and updating multiplicatively weighted Voronoi diagrams for point, line and polygon features in GIS — Pinfiang Dong

Association Announcement 2005 Felix Chayes Prize

Charting of geoelectric potential signal dynamics via geometrical techniques and its possible relation to significant earthquakes in Western Greece — Christos Theoharatos, Apostolos Tantis, Nikolaos A. Laskaris, George Economou

A GIS-based method to calculate flow accumulation by considering dams and their specific operation time — Holger Schäuble, Oswald Marinoni, Matthias Hinderer

Finite element modelling of the effective elastic properties of partially saturated rocks — Dina Makarynska, Boris Gurevich, Radim Ciz, Christoph H. Arns, Mark A. Knackstedt

Animating measured precipitation and soil moisture data — Jan G. Wesseling, Klaas Oostindie, Louis W. Dekker, Erik van den Elsen, Coen J. Risema

ALMA, a Fortran program for computing the viscoelastic Love numbers of a spherically symmetric planet — G. Spada

Object segmentation within microscope images of palynofacies — J.J. Charles, E.I. Kuncheva, B. Wells, I.S. Lim

Effective modelling of percolation at the landscape scale using data-based approaches — Benny Selle, Gunnar Lischeid, Bernd Huwe

C&G Volume 34, Issue 7 (July 2008)

Multiscale remote sensing data segmentation and post-segmentation change detection based on logical modeling: Theoretical exposition and experimental results for forestland cover change analysis — Yashon O. Ouma, S.S. Josaphat, Ryutaro Tateishi

Tensor3D: A computer graphics program to simulate 3D real-time deformation and visualization of geometric bodies — Luca Pollozzi Lavorante, Hans Dirk Ebert

Efficient computation of C&G Volume fractions for multi-material cell complexes in a grid by slicing — Dibakar Sen, T.K. Srikanth

CASMI — A visualization tool for the World Stress Map database — Oliver Heidbuch, Jens Höhne

Matlab software for the analysis of seismic waves recorded by three-element arrays — P. Pignatelli, A. Giuntini, R. Console

Equations of motion and ballistic paths of volcanic ejecta — Houston C. Saunders

Estimation of water surface elevations for the Everglades, Florida — Monica Palaeau, Louis Pearlstone

eCSedtrend: A new software to improve sediment trend analysis — E. Poizot, Y. Mér

A fast and fully automatic registration approach based on point features for multi-source remote-sensing images — Le Yu, Dengrong Zhang, Eun-Jung Holden

The application of a meshless method to consolidation analysis of saturated soils with anisotropic damage — Zhi-Liang Wang, J.G. Wang, R.F. Shen.

Harbaugh - cont’d from p. 10

Computer codes: Here we might presume that academic basin modeling is distinct from commercial basin modeling because of the presumed greater transparency of academically generated computer codes. By contrast, commercial codes presumably are likely to be regarded as trade secrets. From an academic research standpoint, accessibility of codes might be regarded as scientifically essential or at least desirable. Anyhow, the issue needs to be addressed in classification schemes.

Mathematics: Many fields in mathematical geology involve established mathematical concepts that may be more or less rudimentary, at least from a mathematician’s viewpoint. Taking an example from sedimentary basin modeling, there are well-established procedures to represent flow, as well as accounting schemes to keep track of sediment that eroded, transported, and redeposited. The computing procedures may be involved, although the underlying mathematics may be much more straightforward. But many of the aspects involve challenging computing procedures, as for example in graphic display. The problem is that it could be difficult to separate computing procedures from the underlying mathematics. We can envision many mathematical aspects that could be put into the matrix.

Who’s involved: We need information on who is doing what, and how the work is sponsored. Of course, some work is not formally sponsored given that academics often do what interests them. This is fine, but probably atypical. We know that big quasi-3-D basin models require so much manpower and computer power that they may be unsuited for academic development.
IAMG General Assembly and Celebration in Oslo on August 8, 2008

Celebrating its 40th anniversary, the IAMG will have an active profile in Oslo during the forthcoming 33rd International Geological Congress. From August 6 to 8, we are co-sponsoring a variety of symposia and special lectures in the Norway Convention Centre in Lillestrøm that are listed on www.33icsg.org. These include presentations by our William Christian Krumein Medalist, John Cedric Griffiths Award Winners, and the Georges Matheron Lecture.

The IAMG Business Meeting will be held in the newly restored Tyøen Hovedgård (Manor House; literary translated Mainfarm) of the Natural History Museum of the University of Oslo, on Friday, August 8, 2008. The General Assembly will be from 16:00 to 18:30 p.m., and the 40th IAMG Anniversary Celebration will commence after the General Assembly.

The Natural History Museum with geological and palaeontological exhibitions is located in the Botanical Gardens (free admission) described as an oasis in the heart of Oslo. It contains a rock garden with more than 1,000 mountain plants around its waterfalls. Nearby is the Edward Munch Museum (Tøyengate 53; admission 60 NOK) where “The Scream” and other Munch paintings are on display. The birthday celebration will take place both inside and outside the Hoved Gård with a dinner featuring Norwegian and exotic dishes with live music provided by the world famous Muddy Waters Blues & Rock Live Band.

Dinner reservations can be made in advance by e-mailing the IAMG Office (office@iamg.org) at a cost of $60 US/per person for IAMG members in good standing and spouses (and $30 US/per person for IAMG student members) to be paid in advance. Tickets can be picked up before noon at the IAMG’s 33rd IGC Booth in the Norway Convention Centre or in the Hoved Gård before commencement of the celebrations.

Dinner ticket price for non-members is $120 US/per person and spouses. Payment of this non-subsidized price can be avoided by registering as an IAMG member at www.iamg.org before ordering banquet tickets. Membership dues for 2008 are $10 US; while 4-year and lifetime membership dues are $40 US and $120 US, respectively.

Please make your Banquet reservations as soon as possible, because IAMG must pre-pay expenses in June.
INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY
YEAR 2008 MEMBERSHIP APPLICATION

Name ___ ☐ Dr. ☐ Prof. ☐ Mr. ☐ Ms.

Institution__ Email____________________

Department_______________________________________ Website_________________

Address___ Phone_________________

City/State/Zip_______________________________________ Country______________ Fax______________

☐ Check this box to exclude your name from the IAMG web site electronic directory.

IAMG DUES (for membership benefits, see the IAMG web page at www.iavg.org)
☐ Ordinary member – 1 year .. US$ 10.00
☐ Ordinary member – 4 years .. US$ 40.00
☐ Ordinary member – Lifetime ... US$ 120.00
☐ Student member (proof of enrollment required) US$ 5.00
☐ Institutional member (includes library subscriptions to all 3 journals, etc) US$ 3,500.00

OPTIONAL: Discounted rates on our journals
☐ Mathematical Geosciences (print and electronic versions), regular US$ 45.00
☐ Mathematical Geosciences (print and electronic versions), student (proof of enrollment required) US$ 22.50
☐ Computers & Geosciences, regular US$ 87.00
☐ Computers & Geosciences, student (proof of enrollment required) US$ 43.00
☐ Computers & Geosciences, electronic subscription, regular or student US$ 43.00
☐ Natural Resources Research ... US$ 55.00

OPTIONAL: IAMG Monograph Series
☐ #5: “Computers in Geology: 25 Years of Progress” edited by J.C. Davis and U.C. Herzfeld US$ 99.50
☐ #6: “Modern Spatiotemporal Geostatistics” by George Christakos US$ 64.50
☐ #7: “Geostatistical Analysis of Compositional Data” by V. Pawlosky-Glahn and R.A. Olea US$ 99.50
☐ #8: “Statistical Methods for Estimating Petroleum Resources” by P. J. Lee US$ 93.50

OPTIONAL: CD’s
☐ Computers & Geosciences Silver CD: 25 years of computer code US$ 25.00
☐ Proceedings IAMG/2001 in Cancun US$ 10.00
☐ Proceedings IAMG/2002 in Berlin .. US$ 10.00
☐ Proceedings IAMG/2003 in Portsmouth US$ 10.00
☐ Proceedings IAMG/2005 in Toronto US$ 10.00
☐ Proceedings IAMG/2006 in Liege .. US$ 10.00
☐ Proceedings IAMG/2007 in Beijing US$ 10.00

OPTIONAL: Donation to IAMG (please fill in amount) US$________

TOTAL .. US$________

I wish to pay by: ☐ Check payable in U.S. currency drawn on a U. S. bank, to:
INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY
☐ Credit Card: ☐ MasterCard ☐ Visa ☐ American Express
If payment is made by credit card, your credit card statement will quote
“Events & Management Plus Inc.” as the vendor.

Card Number________________________ Card Security Code________
Card Expiration Date_____________

Signature________________________

PROOF OF STUDENT ENROLLMENT

Student Name __________________________
Degree Objective ________________________
University Name _________________________
University Address _______________________
Country_______________________________

I hereby certify that the student named on this form is currently enrolled at this University, where I am a professor.

Professor’s Name________________________

Professor’s Signature________________________
Date________________________

Send this form to:
IAMG Office
4 Cataraqui St., Suite 310
Kingston, ON K7K 1Z7
Canada

E-mail: office@iavg.org
FAX: +1 613 531 0626
Tel: +1 613 544 6878
Mathematical Geosciences
Edited by: Roussos Dimitrakopoulos

- Formerly Mathematical Geology
- A flag-ship journal of the International Association of Mathematical Geology (IAMG)
- Publishes papers focusing on quantitative methods and studies of the Earth and its natural resources

Special free trial offer: Springer offers a six months electronic subscription to IAMG members.